3.213 \(\int \frac {1}{-3+2 x+x^2} \, dx\)

Optimal. Leaf size=19 \[ \frac {1}{4} \log (1-x)-\frac {1}{4} \log (x+3) \]

[Out]

1/4*ln(1-x)-1/4*ln(3+x)

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {616, 31} \[ \frac {1}{4} \log (1-x)-\frac {1}{4} \log (x+3) \]

Antiderivative was successfully verified.

[In]

Int[(-3 + 2*x + x^2)^(-1),x]

[Out]

Log[1 - x]/4 - Log[3 + x]/4

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 616

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/Simp
[b/2 - q/2 + c*x, x], x], x] - Dist[c/q, Int[1/Simp[b/2 + q/2 + c*x, x], x], x]] /; FreeQ[{a, b, c}, x] && NeQ
[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c] && PerfectSquareQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {1}{-3+2 x+x^2} \, dx &=\frac {1}{4} \int \frac {1}{-1+x} \, dx-\frac {1}{4} \int \frac {1}{3+x} \, dx\\ &=\frac {1}{4} \log (1-x)-\frac {1}{4} \log (3+x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 19, normalized size = 1.00 \[ \frac {1}{4} \log (1-x)-\frac {1}{4} \log (x+3) \]

Antiderivative was successfully verified.

[In]

Integrate[(-3 + 2*x + x^2)^(-1),x]

[Out]

Log[1 - x]/4 - Log[3 + x]/4

________________________________________________________________________________________

fricas [A]  time = 0.40, size = 13, normalized size = 0.68 \[ -\frac {1}{4} \, \log \left (x + 3\right ) + \frac {1}{4} \, \log \left (x - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2+2*x-3),x, algorithm="fricas")

[Out]

-1/4*log(x + 3) + 1/4*log(x - 1)

________________________________________________________________________________________

giac [A]  time = 0.84, size = 15, normalized size = 0.79 \[ -\frac {1}{4} \, \log \left ({\left | x + 3 \right |}\right ) + \frac {1}{4} \, \log \left ({\left | x - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2+2*x-3),x, algorithm="giac")

[Out]

-1/4*log(abs(x + 3)) + 1/4*log(abs(x - 1))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 14, normalized size = 0.74 \[ \frac {\ln \left (x -1\right )}{4}-\frac {\ln \left (x +3\right )}{4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2+2*x-3),x)

[Out]

-1/4*ln(x+3)+1/4*ln(x-1)

________________________________________________________________________________________

maxima [A]  time = 0.57, size = 13, normalized size = 0.68 \[ -\frac {1}{4} \, \log \left (x + 3\right ) + \frac {1}{4} \, \log \left (x - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2+2*x-3),x, algorithm="maxima")

[Out]

-1/4*log(x + 3) + 1/4*log(x - 1)

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 8, normalized size = 0.42 \[ -\frac {\mathrm {atanh}\left (\frac {x}{2}+\frac {1}{2}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*x + x^2 - 3),x)

[Out]

-atanh(x/2 + 1/2)/2

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 12, normalized size = 0.63 \[ \frac {\log {\left (x - 1 \right )}}{4} - \frac {\log {\left (x + 3 \right )}}{4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**2+2*x-3),x)

[Out]

log(x - 1)/4 - log(x + 3)/4

________________________________________________________________________________________