Optimal. Leaf size=12 \[ 5 e (3+3 x) \log (3+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 18, normalized size of antiderivative = 1.50, number of steps used = 8, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {6688, 12, 6742, 43, 2389, 2295} \begin {gather*} 15 e (x+3) \log (x+3)-30 e \log (x+3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 2295
Rule 2389
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15 e (1+x+(3+x) \log (3+x))}{3+x} \, dx\\ &=(15 e) \int \frac {1+x+(3+x) \log (3+x)}{3+x} \, dx\\ &=(15 e) \int \left (\frac {1+x}{3+x}+\log (3+x)\right ) \, dx\\ &=(15 e) \int \frac {1+x}{3+x} \, dx+(15 e) \int \log (3+x) \, dx\\ &=(15 e) \int \left (1-\frac {2}{3+x}\right ) \, dx+(15 e) \operatorname {Subst}(\int \log (x) \, dx,x,3+x)\\ &=-30 e \log (3+x)+15 e (3+x) \log (3+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 14, normalized size = 1.17 \begin {gather*} 15 e (\log (3+x)+x \log (3+x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 11, normalized size = 0.92 \begin {gather*} 15 \, {\left (x + 1\right )} e \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 18, normalized size = 1.50 \begin {gather*} 15 \, x e \log \left (x + 3\right ) + 15 \, e \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 19, normalized size = 1.58
method | result | size |
norman | \(15 \,{\mathrm e} \ln \left (3+x \right )+15 x \,{\mathrm e} \ln \left (3+x \right )\) | \(19\) |
risch | \(15 \,{\mathrm e} \ln \left (3+x \right )+15 x \,{\mathrm e} \ln \left (3+x \right )\) | \(19\) |
derivativedivides | \(15 \,{\mathrm e} \left (\left (3+x \right ) \ln \left (3+x \right )-3-x \right )+15 \left (3+x \right ) {\mathrm e}-30 \,{\mathrm e} \ln \left (3+x \right )\) | \(34\) |
default | \(15 \,{\mathrm e} \left (\left (3+x \right ) \ln \left (3+x \right )-3-x \right )+15 \left (3+x \right ) {\mathrm e}-30 \,{\mathrm e} \ln \left (3+x \right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.34, size = 69, normalized size = 5.75 \begin {gather*} 15 \, {\left (x - 3 \, \log \left (x + 3\right )\right )} e \log \left (x + 3\right ) + \frac {45}{2} \, e \log \left (x + 3\right )^{2} + \frac {15}{2} \, {\left (3 \, \log \left (x + 3\right )^{2} - 2 \, x + 6 \, \log \left (x + 3\right )\right )} e + 15 \, {\left (x - 3 \, \log \left (x + 3\right )\right )} e + 15 \, e \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.83, size = 11, normalized size = 0.92 \begin {gather*} 15\,\ln \left (x+3\right )\,\mathrm {e}\,\left (x+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 1.67 \begin {gather*} 15 e x \log {\left (x + 3 \right )} + 15 e \log {\left (x + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________