Optimal. Leaf size=21 \[ \left (-15-x-\frac {8 x}{x+x^2}+2 \log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.46, antiderivative size = 46, normalized size of antiderivative = 2.19, number of steps used = 16, number of rules used = 10, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {6688, 12, 6742, 1850, 1620, 2357, 2295, 2301, 2314, 31} \begin {gather*} x^2+30 x+\frac {224}{x+1}+\frac {64}{(x+1)^2}+4 \log ^2(x)+\frac {32 x \log (x)}{x+1}-4 x \log (x)-92 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 1620
Rule 1850
Rule 2295
Rule 2301
Rule 2314
Rule 2357
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (2+11 x-x^3\right ) \left (-23-16 x-x^2+2 (1+x) \log (x)\right )}{x (1+x)^3} \, dx\\ &=2 \int \frac {\left (2+11 x-x^3\right ) \left (-23-16 x-x^2+2 (1+x) \log (x)\right )}{x (1+x)^3} \, dx\\ &=2 \int \left (\frac {16 \left (-2-11 x+x^3\right )}{(1+x)^3}+\frac {23 \left (-2-11 x+x^3\right )}{x (1+x)^3}+\frac {x \left (-2-11 x+x^3\right )}{(1+x)^3}-\frac {2 \left (-2-11 x+x^3\right ) \log (x)}{x (1+x)^2}\right ) \, dx\\ &=2 \int \frac {x \left (-2-11 x+x^3\right )}{(1+x)^3} \, dx-4 \int \frac {\left (-2-11 x+x^3\right ) \log (x)}{x (1+x)^2} \, dx+32 \int \frac {-2-11 x+x^3}{(1+x)^3} \, dx+46 \int \frac {-2-11 x+x^3}{x (1+x)^3} \, dx\\ &=2 \int \left (-3+x-\frac {8}{(1+x)^3}+\frac {16}{(1+x)^2}-\frac {5}{1+x}\right ) \, dx-4 \int \left (\log (x)-\frac {2 \log (x)}{x}-\frac {8 \log (x)}{(1+x)^2}\right ) \, dx+32 \int \left (1+\frac {8}{(1+x)^3}-\frac {8}{(1+x)^2}-\frac {3}{1+x}\right ) \, dx+46 \int \left (-\frac {2}{x}-\frac {8}{(1+x)^3}+\frac {3}{1+x}\right ) \, dx\\ &=26 x+x^2+\frac {64}{(1+x)^2}+\frac {224}{1+x}-92 \log (x)+32 \log (1+x)-4 \int \log (x) \, dx+8 \int \frac {\log (x)}{x} \, dx+32 \int \frac {\log (x)}{(1+x)^2} \, dx\\ &=30 x+x^2+\frac {64}{(1+x)^2}+\frac {224}{1+x}-92 \log (x)-4 x \log (x)+\frac {32 x \log (x)}{1+x}+4 \log ^2(x)+32 \log (1+x)-32 \int \frac {1}{1+x} \, dx\\ &=30 x+x^2+\frac {64}{(1+x)^2}+\frac {224}{1+x}-92 \log (x)-4 x \log (x)+\frac {32 x \log (x)}{1+x}+4 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 48, normalized size = 2.29 \begin {gather*} 2 \left (15 x+\frac {x^2}{2}+\frac {16 (9+7 x)}{(1+x)^2}-\frac {2 \left (23+16 x+x^2\right ) \log (x)}{1+x}+2 \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 2.43, size = 60, normalized size = 2.86 \begin {gather*} \frac {x^{4} + 32 \, x^{3} + 4 \, {\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)^{2} + 61 \, x^{2} - 4 \, {\left (x^{3} + 17 \, x^{2} + 39 \, x + 23\right )} \log \relax (x) + 254 \, x + 288}{x^{2} + 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{5} + 16 \, x^{4} + 12 \, x^{3} - 178 \, x^{2} - 2 \, {\left (x^{4} + x^{3} - 11 \, x^{2} - 13 \, x - 2\right )} \log \relax (x) - 285 \, x - 46\right )}}{x^{4} + 3 \, x^{3} + 3 \, x^{2} + x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 47, normalized size = 2.24
method | result | size |
default | \(x^{2}+30 x -92 \ln \relax (x )+\frac {64}{\left (x +1\right )^{2}}+\frac {224}{x +1}-4 x \ln \relax (x )+4 \ln \relax (x )^{2}+\frac {32 \ln \relax (x ) x}{x +1}\) | \(47\) |
risch | \(4 \ln \relax (x )^{2}-\frac {4 \left (x^{2}+x +8\right ) \ln \relax (x )}{x +1}-\frac {-x^{4}+60 x^{2} \ln \relax (x )-32 x^{3}+120 x \ln \relax (x )-61 x^{2}+60 \ln \relax (x )-254 x -288}{\left (x +1\right )^{2}}\) | \(66\) |
norman | \(\frac {x^{4}-66 x^{2}-14 \ln \relax (x )+10 x^{2} \ln \relax (x )+32 x^{3}+4 \ln \relax (x )^{2}+8 x \ln \relax (x )^{2}+4 x^{2} \ln \relax (x )^{2}-4 x^{3} \ln \relax (x )+161}{\left (x +1\right )^{2}}-78 \ln \relax (x )\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 137, normalized size = 6.52 \begin {gather*} x^{2} + 26 \, x + \frac {8 \, x + 7}{x^{2} + 2 \, x + 1} - \frac {16 \, {\left (6 \, x + 5\right )}}{x^{2} + 2 \, x + 1} + \frac {12 \, {\left (4 \, x + 3\right )}}{x^{2} + 2 \, x + 1} - \frac {46 \, {\left (2 \, x + 3\right )}}{x^{2} + 2 \, x + 1} + \frac {178 \, {\left (2 \, x + 1\right )}}{x^{2} + 2 \, x + 1} + \frac {4 \, {\left ({\left (x + 1\right )} \log \relax (x)^{2} + x^{2} - {\left (x^{2} + x + 8\right )} \log \relax (x) + x\right )}}{x + 1} + \frac {285}{x^{2} + 2 \, x + 1} - 60 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.36, size = 44, normalized size = 2.10 \begin {gather*} 4\,{\ln \relax (x)}^2-60\,\ln \relax (x)-x\,\left (4\,\ln \relax (x)-30\right )-\frac {32\,\ln \relax (x)+x\,\left (32\,\ln \relax (x)-224\right )-288}{{\left (x+1\right )}^2}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 49, normalized size = 2.33 \begin {gather*} x^{2} + 30 x + \frac {224 x + 288}{x^{2} + 2 x + 1} + 4 \log {\relax (x )}^{2} - 60 \log {\relax (x )} + \frac {\left (- 4 x^{2} - 4 x - 32\right ) \log {\relax (x )}}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________