Optimal. Leaf size=27 \[ \frac {19}{4}+x+\frac {\left (1-\frac {3}{\log \left (-5+\frac {1}{5-x}\right )}\right )^2}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18 x+\left (-2160+876 x-90 x^2\right ) \log \left (\frac {24-5 x}{-5+x}\right )+\left (1440-588 x+60 x^2\right ) \log ^2\left (\frac {24-5 x}{-5+x}\right )+\left (-240+98 x-10 x^2+120 x^3-49 x^4+5 x^5\right ) \log ^3\left (\frac {24-5 x}{-5+x}\right )}{\left (120 x^3-49 x^4+5 x^5\right ) \log ^3\left (\frac {24-5 x}{-5+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 x+\left (-2160+876 x-90 x^2\right ) \log \left (\frac {24-5 x}{-5+x}\right )+\left (1440-588 x+60 x^2\right ) \log ^2\left (\frac {24-5 x}{-5+x}\right )+\left (-240+98 x-10 x^2+120 x^3-49 x^4+5 x^5\right ) \log ^3\left (\frac {24-5 x}{-5+x}\right )}{x^3 \left (120-49 x+5 x^2\right ) \log ^3\left (\frac {24-5 x}{-5+x}\right )} \, dx\\ &=\int \left (\frac {-2+x^3}{x^3}+\frac {18}{(-5+x) x^2 (-24+5 x) \log ^3\left (\frac {24-5 x}{-5+x}\right )}-\frac {6 \left (360-146 x+15 x^2\right )}{(-5+x) x^3 (-24+5 x) \log ^2\left (\frac {24-5 x}{-5+x}\right )}+\frac {12}{x^3 \log \left (\frac {24-5 x}{-5+x}\right )}\right ) \, dx\\ &=-\left (6 \int \frac {360-146 x+15 x^2}{(-5+x) x^3 (-24+5 x) \log ^2\left (\frac {24-5 x}{-5+x}\right )} \, dx\right )+12 \int \frac {1}{x^3 \log \left (\frac {24-5 x}{-5+x}\right )} \, dx+18 \int \frac {1}{(-5+x) x^2 (-24+5 x) \log ^3\left (\frac {24-5 x}{-5+x}\right )} \, dx+\int \frac {-2+x^3}{x^3} \, dx\\ &=-\left (6 \int \frac {360-146 x+15 x^2}{(-5+x) x^3 (-24+5 x) \log ^2\left (\frac {24-5 x}{-5+x}\right )} \, dx\right )+12 \int \frac {1}{x^3 \log \left (\frac {24-5 x}{-5+x}\right )} \, dx+18 \int \frac {1}{(-5+x) x^2 (-24+5 x) \log ^3\left (\frac {24-5 x}{-5+x}\right )} \, dx+\int \left (1-\frac {2}{x^3}\right ) \, dx\\ &=\frac {1}{x^2}+x-6 \int \frac {360-146 x+15 x^2}{(-5+x) x^3 (-24+5 x) \log ^2\left (\frac {24-5 x}{-5+x}\right )} \, dx+12 \int \frac {1}{x^3 \log \left (\frac {24-5 x}{-5+x}\right )} \, dx+18 \int \frac {1}{(-5+x) x^2 (-24+5 x) \log ^3\left (\frac {24-5 x}{-5+x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 43, normalized size = 1.59 \begin {gather*} \frac {1}{x^2}+x+\frac {9}{x^2 \log ^2\left (\frac {24-5 x}{-5+x}\right )}-\frac {6}{x^2 \log \left (\frac {24-5 x}{-5+x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 57, normalized size = 2.11 \begin {gather*} \frac {{\left (x^{3} + 1\right )} \log \left (-\frac {5 \, x - 24}{x - 5}\right )^{2} - 6 \, \log \left (-\frac {5 \, x - 24}{x - 5}\right ) + 9}{x^{2} \log \left (-\frac {5 \, x - 24}{x - 5}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.32, size = 235, normalized size = 8.70 \begin {gather*} -\frac {3 \, {\left (\frac {2 \, {\left (5 \, x - 24\right )}^{2} \log \left (-\frac {5 \, x - 24}{x - 5}\right )}{{\left (x - 5\right )}^{2}} - \frac {20 \, {\left (5 \, x - 24\right )} \log \left (-\frac {5 \, x - 24}{x - 5}\right )}{x - 5} - \frac {3 \, {\left (5 \, x - 24\right )}^{2}}{{\left (x - 5\right )}^{2}} + \frac {30 \, {\left (5 \, x - 24\right )}}{x - 5} + 50 \, \log \left (-\frac {5 \, x - 24}{x - 5}\right ) - 75\right )}}{\frac {25 \, {\left (5 \, x - 24\right )}^{2} \log \left (-\frac {5 \, x - 24}{x - 5}\right )^{2}}{{\left (x - 5\right )}^{2}} - \frac {240 \, {\left (5 \, x - 24\right )} \log \left (-\frac {5 \, x - 24}{x - 5}\right )^{2}}{x - 5} + 576 \, \log \left (-\frac {5 \, x - 24}{x - 5}\right )^{2}} - \frac {\frac {10 \, {\left (5 \, x - 24\right )}}{x - 5} - 49}{25 \, {\left (\frac {25 \, {\left (5 \, x - 24\right )}^{2}}{{\left (x - 5\right )}^{2}} - \frac {240 \, {\left (5 \, x - 24\right )}}{x - 5} + 576\right )}} + \frac {1}{\frac {5 \, x - 24}{x - 5} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 46, normalized size = 1.70
method | result | size |
risch | \(\frac {x^{3}+1}{x^{2}}-\frac {3 \left (2 \ln \left (\frac {-5 x +24}{x -5}\right )-3\right )}{x^{2} \ln \left (\frac {-5 x +24}{x -5}\right )^{2}}\) | \(46\) |
norman | \(\frac {9+\ln \left (\frac {-5 x +24}{x -5}\right )^{2}+x^{3} \ln \left (\frac {-5 x +24}{x -5}\right )^{2}-6 \ln \left (\frac {-5 x +24}{x -5}\right )}{\ln \left (\frac {-5 x +24}{x -5}\right )^{2} x^{2}}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 95, normalized size = 3.52 \begin {gather*} \frac {{\left (x^{3} + 1\right )} \log \left (x - 5\right )^{2} + {\left (x^{3} + 1\right )} \log \left (-5 \, x + 24\right )^{2} - 2 \, {\left ({\left (x^{3} + 1\right )} \log \left (x - 5\right ) + 3\right )} \log \left (-5 \, x + 24\right ) + 6 \, \log \left (x - 5\right ) + 9}{x^{2} \log \left (x - 5\right )^{2} - 2 \, x^{2} \log \left (x - 5\right ) \log \left (-5 \, x + 24\right ) + x^{2} \log \left (-5 \, x + 24\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.82, size = 70, normalized size = 2.59 \begin {gather*} x+150\,\ln \left (\frac {5\,x-24}{x-5}\right )-\frac {6}{x^2\,\ln \left (-\frac {5\,x-24}{x-5}\right )}+\frac {9}{x^2\,{\ln \left (-\frac {5\,x-24}{x-5}\right )}^2}+\frac {1}{x^2}+\mathrm {atan}\left (x\,10{}\mathrm {i}-49{}\mathrm {i}\right )\,300{}\mathrm {i} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 34, normalized size = 1.26 \begin {gather*} x + \frac {9 - 6 \log {\left (\frac {24 - 5 x}{x - 5} \right )}}{x^{2} \log {\left (\frac {24 - 5 x}{x - 5} \right )}^{2}} + \frac {1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________