Optimal. Leaf size=24 \[ \frac {16}{x}-\frac {4 \log (2 x)}{x (1-5 (4+x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 39, normalized size of antiderivative = 1.62, number of steps used = 11, number of rules used = 8, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.205, Rules used = {1594, 27, 6742, 77, 2357, 2304, 2314, 31} \begin {gather*} \frac {16}{x}-\frac {20 \log (x)}{361}+\frac {4 \log (2 x)}{19 x}+\frac {100 x \log (2 x)}{361 (5 x+19)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 31
Rule 77
Rule 1594
Rule 2304
Rule 2314
Rule 2357
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5700-3020 x-400 x^2+(-76-40 x) \log (2 x)}{x^2 \left (361+190 x+25 x^2\right )} \, dx\\ &=\int \frac {-5700-3020 x-400 x^2+(-76-40 x) \log (2 x)}{x^2 (19+5 x)^2} \, dx\\ &=\int \left (-\frac {20 (15+4 x)}{x^2 (19+5 x)}-\frac {4 (19+10 x) \log (2 x)}{x^2 (19+5 x)^2}\right ) \, dx\\ &=-\left (4 \int \frac {(19+10 x) \log (2 x)}{x^2 (19+5 x)^2} \, dx\right )-20 \int \frac {15+4 x}{x^2 (19+5 x)} \, dx\\ &=-\left (4 \int \left (\frac {\log (2 x)}{19 x^2}-\frac {25 \log (2 x)}{19 (19+5 x)^2}\right ) \, dx\right )-20 \int \left (\frac {15}{19 x^2}+\frac {1}{361 x}-\frac {5}{361 (19+5 x)}\right ) \, dx\\ &=\frac {300}{19 x}-\frac {20 \log (x)}{361}+\frac {20}{361} \log (19+5 x)-\frac {4}{19} \int \frac {\log (2 x)}{x^2} \, dx+\frac {100}{19} \int \frac {\log (2 x)}{(19+5 x)^2} \, dx\\ &=\frac {16}{x}-\frac {20 \log (x)}{361}+\frac {4 \log (2 x)}{19 x}+\frac {100 x \log (2 x)}{361 (19+5 x)}+\frac {20}{361} \log (19+5 x)-\frac {100}{361} \int \frac {1}{19+5 x} \, dx\\ &=\frac {16}{x}-\frac {20 \log (x)}{361}+\frac {4 \log (2 x)}{19 x}+\frac {100 x \log (2 x)}{361 (19+5 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 22, normalized size = 0.92 \begin {gather*} \frac {4 (76+20 x+\log (2 x))}{19 x+5 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 22, normalized size = 0.92 \begin {gather*} \frac {4 \, {\left (20 \, x + \log \left (2 \, x\right ) + 76\right )}}{5 \, x^{2} + 19 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 27, normalized size = 1.12 \begin {gather*} -\frac {4}{19} \, {\left (\frac {5}{5 \, x + 19} - \frac {1}{x}\right )} \log \left (2 \, x\right ) + \frac {16}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 0.96
method | result | size |
norman | \(\frac {304+80 x +4 \ln \left (2 x \right )}{x \left (5 x +19\right )}\) | \(23\) |
risch | \(\frac {4 \ln \left (2 x \right )}{x \left (5 x +19\right )}+\frac {16}{x}\) | \(23\) |
derivativedivides | \(\frac {16}{x}-\frac {20 \ln \left (2 x \right )}{361}+\frac {200 \ln \left (2 x \right ) x}{361 \left (10 x +38\right )}+\frac {4 \ln \left (2 x \right )}{19 x}\) | \(36\) |
default | \(\frac {16}{x}-\frac {20 \ln \left (2 x \right )}{361}+\frac {200 \ln \left (2 x \right ) x}{361 \left (10 x +38\right )}+\frac {4 \ln \left (2 x \right )}{19 x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 54, normalized size = 2.25 \begin {gather*} \frac {300 \, {\left (10 \, x + 19\right )}}{19 \, {\left (5 \, x^{2} + 19 \, x\right )}} + \frac {4 \, {\left (5 \, x + 19 \, \log \relax (2) + 19 \, \log \relax (x) + 19\right )}}{19 \, {\left (5 \, x^{2} + 19 \, x\right )}} - \frac {1500}{19 \, {\left (5 \, x + 19\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.82, size = 25, normalized size = 1.04 \begin {gather*} \frac {4\,\left (19\,\ln \left (2\,x\right )-100\,x^2+1444\right )}{19\,x\,\left (5\,x+19\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.71 \begin {gather*} \frac {4 \log {\left (2 x \right )}}{5 x^{2} + 19 x} + \frac {16}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________