Optimal. Leaf size=15 \[ -5+2 x+\frac {3 x^2 \log (9)}{e^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 22, normalized size of antiderivative = 1.47, number of steps used = 1, number of rules used = 1, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {9} \begin {gather*} \frac {\left (3 x \log (9)+e^4\right )^2}{3 e^4 \log (9)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\left (e^4+3 x \log (9)\right )^2}{3 e^4 \log (9)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 14, normalized size = 0.93 \begin {gather*} 2 x+\frac {3 x^2 \log (9)}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 16, normalized size = 1.07 \begin {gather*} 2 \, {\left (3 \, x^{2} \log \relax (3) + x e^{4}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 16, normalized size = 1.07 \begin {gather*} 2 \, {\left (3 \, x^{2} \log \relax (3) + x e^{4}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.93
method | result | size |
risch | \(6 \ln \relax (3) x^{2} {\mathrm e}^{-4}+2 x\) | \(14\) |
gosper | \(2 x \left ({\mathrm e}^{4}+3 x \ln \relax (3)\right ) {\mathrm e}^{-4}\) | \(18\) |
default | \({\mathrm e}^{-4} \left (6 x^{2} \ln \relax (3)+2 x \,{\mathrm e}^{4}\right )\) | \(21\) |
norman | \(\left (2 \,{\mathrm e}^{2} x +6 \,{\mathrm e}^{-2} \ln \relax (3) x^{2}\right ) {\mathrm e}^{-2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 16, normalized size = 1.07 \begin {gather*} 2 \, {\left (3 \, x^{2} \log \relax (3) + x e^{4}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 18, normalized size = 1.20 \begin {gather*} \frac {{\mathrm {e}}^{-4}\,{\left ({\mathrm {e}}^4+6\,x\,\ln \relax (3)\right )}^2}{6\,\ln \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 14, normalized size = 0.93 \begin {gather*} \frac {6 x^{2} \log {\relax (3 )}}{e^{4}} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________