Optimal. Leaf size=18 \[ -\frac {2 x (-2+\log (x))}{e \log \left (-4+x^4\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x^4+8 x^4 \log (x)+\left (-8+2 x^4+\left (8-2 x^4\right ) \log (x)\right ) \log \left (-4+x^4\right )}{e \left (-4+x^4\right ) \log ^2\left (-4+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-16 x^4+8 x^4 \log (x)+\left (-8+2 x^4+\left (8-2 x^4\right ) \log (x)\right ) \log \left (-4+x^4\right )}{\left (-4+x^4\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}\\ &=\frac {\int \left (\frac {8 x^4 (-2+\log (x))}{\left (-4+x^4\right ) \log ^2\left (-4+x^4\right )}-\frac {2 (-1+\log (x))}{\log \left (-4+x^4\right )}\right ) \, dx}{e}\\ &=-\frac {2 \int \frac {-1+\log (x)}{\log \left (-4+x^4\right )} \, dx}{e}+\frac {8 \int \frac {x^4 (-2+\log (x))}{\left (-4+x^4\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}\\ &=-\frac {2 \int \left (-\frac {1}{\log \left (-4+x^4\right )}+\frac {\log (x)}{\log \left (-4+x^4\right )}\right ) \, dx}{e}+\frac {8 \int \left (\frac {2-\log (x)}{\left (2+x^2\right ) \log ^2\left (-4+x^4\right )}+\frac {-2+\log (x)}{\log ^2\left (-4+x^4\right )}+\frac {-2+\log (x)}{\left (-2+x^2\right ) \log ^2\left (-4+x^4\right )}\right ) \, dx}{e}\\ &=\frac {2 \int \frac {1}{\log \left (-4+x^4\right )} \, dx}{e}-\frac {2 \int \frac {\log (x)}{\log \left (-4+x^4\right )} \, dx}{e}+\frac {8 \int \frac {2-\log (x)}{\left (2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}+\frac {8 \int \frac {-2+\log (x)}{\log ^2\left (-4+x^4\right )} \, dx}{e}+\frac {8 \int \frac {-2+\log (x)}{\left (-2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}\\ &=\frac {2 \int \frac {1}{\log \left (-4+x^4\right )} \, dx}{e}-\frac {2 \int \frac {\log (x)}{\log \left (-4+x^4\right )} \, dx}{e}+\frac {8 \int \left (-\frac {2}{\log ^2\left (-4+x^4\right )}+\frac {\log (x)}{\log ^2\left (-4+x^4\right )}\right ) \, dx}{e}+\frac {8 \int \left (-\frac {2}{\left (-2+x^2\right ) \log ^2\left (-4+x^4\right )}+\frac {\log (x)}{\left (-2+x^2\right ) \log ^2\left (-4+x^4\right )}\right ) \, dx}{e}+\frac {8 \int \left (\frac {2}{\left (2+x^2\right ) \log ^2\left (-4+x^4\right )}-\frac {\log (x)}{\left (2+x^2\right ) \log ^2\left (-4+x^4\right )}\right ) \, dx}{e}\\ &=\frac {2 \int \frac {1}{\log \left (-4+x^4\right )} \, dx}{e}-\frac {2 \int \frac {\log (x)}{\log \left (-4+x^4\right )} \, dx}{e}+\frac {8 \int \frac {\log (x)}{\log ^2\left (-4+x^4\right )} \, dx}{e}+\frac {8 \int \frac {\log (x)}{\left (-2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {8 \int \frac {\log (x)}{\left (2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {16 \int \frac {1}{\log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {16 \int \frac {1}{\left (-2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}+\frac {16 \int \frac {1}{\left (2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}\\ &=\frac {2 \int \frac {1}{\log \left (-4+x^4\right )} \, dx}{e}-\frac {2 \int \frac {\log (x)}{\log \left (-4+x^4\right )} \, dx}{e}-\frac {8 \int \left (\frac {i \log (x)}{2 \sqrt {2} \left (i \sqrt {2}-x\right ) \log ^2\left (-4+x^4\right )}+\frac {i \log (x)}{2 \sqrt {2} \left (i \sqrt {2}+x\right ) \log ^2\left (-4+x^4\right )}\right ) \, dx}{e}+\frac {8 \int \left (-\frac {\log (x)}{2 \sqrt {2} \left (\sqrt {2}-x\right ) \log ^2\left (-4+x^4\right )}-\frac {\log (x)}{2 \sqrt {2} \left (\sqrt {2}+x\right ) \log ^2\left (-4+x^4\right )}\right ) \, dx}{e}+\frac {8 \int \frac {\log (x)}{\log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {16 \int \frac {1}{\log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {16 \int \frac {1}{\left (-2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}+\frac {16 \int \frac {1}{\left (2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}\\ &=\frac {2 \int \frac {1}{\log \left (-4+x^4\right )} \, dx}{e}-\frac {2 \int \frac {\log (x)}{\log \left (-4+x^4\right )} \, dx}{e}+\frac {8 \int \frac {\log (x)}{\log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {16 \int \frac {1}{\log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {16 \int \frac {1}{\left (-2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}+\frac {16 \int \frac {1}{\left (2+x^2\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {\left (2 i \sqrt {2}\right ) \int \frac {\log (x)}{\left (i \sqrt {2}-x\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {\left (2 i \sqrt {2}\right ) \int \frac {\log (x)}{\left (i \sqrt {2}+x\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {\left (2 \sqrt {2}\right ) \int \frac {\log (x)}{\left (\sqrt {2}-x\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}-\frac {\left (2 \sqrt {2}\right ) \int \frac {\log (x)}{\left (\sqrt {2}+x\right ) \log ^2\left (-4+x^4\right )} \, dx}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 18, normalized size = 1.00 \begin {gather*} -\frac {2 x (-2+\log (x))}{e \log \left (-4+x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.48, size = 20, normalized size = 1.11 \begin {gather*} -\frac {2 \, {\left (x \log \relax (x) - 2 \, x\right )} e^{\left (-1\right )}}{\log \left (x^{4} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 20, normalized size = 1.11 \begin {gather*} -\frac {2 \, {\left (x \log \relax (x) - 2 \, x\right )} e^{\left (-1\right )}}{\log \left (x^{4} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 18, normalized size = 1.00
method | result | size |
risch | \(-\frac {2 x \,{\mathrm e}^{-1} \left (\ln \relax (x )-2\right )}{\ln \left (x^{4}-4\right )}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 27, normalized size = 1.50 \begin {gather*} -\frac {2 \, {\left (x \log \relax (x) - 2 \, x\right )} e^{\left (-1\right )}}{\log \left (x^{2} + 2\right ) + \log \left (x^{2} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.74, size = 17, normalized size = 0.94 \begin {gather*} -\frac {2\,x\,{\mathrm {e}}^{-1}\,\left (\ln \relax (x)-2\right )}{\ln \left (x^4-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 19, normalized size = 1.06 \begin {gather*} \frac {- 2 x \log {\relax (x )} + 4 x}{e \log {\left (x^{4} - 4 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________