Optimal. Leaf size=27 \[ x \log \left (\log \left (-e^x+e^5 \left (4-e^3-\frac {1}{x}+x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x x^2+e^5 \left (-1-x^2\right )+\left (e^x x+e^5 \left (1-4 x+e^3 x-x^2\right )\right ) \log \left (\frac {-e^x x+e^5 \left (-1+4 x-e^3 x+x^2\right )}{x}\right ) \log \left (\log \left (\frac {-e^x x+e^5 \left (-1+4 x-e^3 x+x^2\right )}{x}\right )\right )}{\left (e^x x+e^5 \left (1-4 x+e^3 x-x^2\right )\right ) \log \left (\frac {-e^x x+e^5 \left (-1+4 x-e^3 x+x^2\right )}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x x^2+e^5 \left (-1-x^2\right )+\left (e^x x+e^5 \left (1-4 x+e^3 x-x^2\right )\right ) \log \left (\frac {-e^x x+e^5 \left (-1+4 x-e^3 x+x^2\right )}{x}\right ) \log \left (\log \left (\frac {-e^x x+e^5 \left (-1+4 x-e^3 x+x^2\right )}{x}\right )\right )}{\left (e^x x+e^5 \left (1-4 x+e^3 x-x^2\right )\right ) \log \left (-e^x+\frac {e^5 \left (-1+4 x-e^3 x+x^2\right )}{x}\right )} \, dx\\ &=\int \left (\frac {e^5 \left (-1-x+\left (3-e^3\right ) x^2+x^3\right )}{\left (e^5+e^x x-4 e^5 \left (1-\frac {e^3}{4}\right ) x-e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )}+\frac {x+\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right ) \log \left (\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )\right )}{\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )}\right ) \, dx\\ &=e^5 \int \frac {-1-x+\left (3-e^3\right ) x^2+x^3}{\left (e^5+e^x x-4 e^5 \left (1-\frac {e^3}{4}\right ) x-e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )} \, dx+\int \frac {x+\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right ) \log \left (\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )\right )}{\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )} \, dx\\ &=e^5 \int \left (\frac {\left (3-e^3\right ) x^2}{\left (e^5+e^x x-4 e^5 \left (1-\frac {e^3}{4}\right ) x-e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )}+\frac {x^3}{\left (e^5+e^x x-4 e^5 \left (1-\frac {e^3}{4}\right ) x-e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )}+\frac {1}{\left (-e^5-e^x x+4 e^5 \left (1-\frac {e^3}{4}\right ) x+e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )}+\frac {x}{\left (-e^5-e^x x+4 e^5 \left (1-\frac {e^3}{4}\right ) x+e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )}\right ) \, dx+\int \left (\frac {x}{\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )}+\log \left (\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )\right )\right ) \, dx\\ &=e^5 \int \frac {x^3}{\left (e^5+e^x x-4 e^5 \left (1-\frac {e^3}{4}\right ) x-e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )} \, dx+e^5 \int \frac {1}{\left (-e^5-e^x x+4 e^5 \left (1-\frac {e^3}{4}\right ) x+e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )} \, dx+e^5 \int \frac {x}{\left (-e^5-e^x x+4 e^5 \left (1-\frac {e^3}{4}\right ) x+e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )} \, dx+\left (e^5 \left (3-e^3\right )\right ) \int \frac {x^2}{\left (e^5+e^x x-4 e^5 \left (1-\frac {e^3}{4}\right ) x-e^5 x^2\right ) \log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )} \, dx+\int \frac {x}{\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )} \, dx+\int \log \left (\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 27, normalized size = 1.00 \begin {gather*} x \log \left (\log \left (-e^8-e^x+e^5 \left (4-\frac {1}{x}+x\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.68, size = 30, normalized size = 1.11 \begin {gather*} x \log \left (\log \left (-\frac {x e^{8} - {\left (x^{2} + 4 \, x - 1\right )} e^{5} + x e^{x}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {x^{2} e^{x} - {\left ({\left (x^{2} - x e^{3} + 4 \, x - 1\right )} e^{5} - x e^{x}\right )} \log \left (\frac {{\left (x^{2} - x e^{3} + 4 \, x - 1\right )} e^{5} - x e^{x}}{x}\right ) \log \left (\log \left (\frac {{\left (x^{2} - x e^{3} + 4 \, x - 1\right )} e^{5} - x e^{x}}{x}\right )\right ) - {\left (x^{2} + 1\right )} e^{5}}{{\left ({\left (x^{2} - x e^{3} + 4 \, x - 1\right )} e^{5} - x e^{x}\right )} \log \left (\frac {{\left (x^{2} - x e^{3} + 4 \, x - 1\right )} e^{5} - x e^{x}}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 232, normalized size = 8.59
method | result | size |
risch | \(x \ln \left (i \pi -\ln \relax (x )+\ln \left ({\mathrm e}^{x} x +\left (x \,{\mathrm e}^{3}-x^{2}-4 x +1\right ) {\mathrm e}^{5}\right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +\left (x \,{\mathrm e}^{3}-x^{2}-4 x +1\right ) {\mathrm e}^{5}\right )}{x}\right ) \left (-\mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +\left (x \,{\mathrm e}^{3}-x^{2}-4 x +1\right ) {\mathrm e}^{5}\right )}{x}\right )+\mathrm {csgn}\left (\frac {i}{x}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +\left (x \,{\mathrm e}^{3}-x^{2}-4 x +1\right ) {\mathrm e}^{5}\right )}{x}\right )+\mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +\left (x \,{\mathrm e}^{3}-x^{2}-4 x +1\right ) {\mathrm e}^{5}\right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +\left (x \,{\mathrm e}^{3}-x^{2}-4 x +1\right ) {\mathrm e}^{5}\right )}{x}\right )^{2} \left (\mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +\left (x \,{\mathrm e}^{3}-x^{2}-4 x +1\right ) {\mathrm e}^{5}\right )}{x}\right )-1\right )\right )\) | \(232\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 35, normalized size = 1.30 \begin {gather*} x \log \left (\log \left (x^{2} e^{5} - x {\left (e^{8} - 4 \, e^{5}\right )} - x e^{x} - e^{5}\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.14, size = 30, normalized size = 1.11 \begin {gather*} x\,\ln \left (\ln \left (\frac {{\mathrm {e}}^5\,\left (4\,x-x\,{\mathrm {e}}^3+x^2-1\right )-x\,{\mathrm {e}}^x}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: CoercionFailed} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________