Optimal. Leaf size=22 \[ x+\frac {1}{3} e^{e^x} x^2+\log (5)-\log (2 x) \]
________________________________________________________________________________________
Rubi [F] time = 0.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3+3 x+e^{e^x} \left (2 x^2+e^x x^3\right )}{3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-3+3 x+e^{e^x} \left (2 x^2+e^x x^3\right )}{x} \, dx\\ &=\frac {1}{3} \int \left (e^{e^x+x} x^2+\frac {-3+3 x+2 e^{e^x} x^2}{x}\right ) \, dx\\ &=\frac {1}{3} \int e^{e^x+x} x^2 \, dx+\frac {1}{3} \int \frac {-3+3 x+2 e^{e^x} x^2}{x} \, dx\\ &=\frac {1}{3} \int e^{e^x+x} x^2 \, dx+\frac {1}{3} \int \left (\frac {3 (-1+x)}{x}+2 e^{e^x} x\right ) \, dx\\ &=\frac {1}{3} \int e^{e^x+x} x^2 \, dx+\frac {2}{3} \int e^{e^x} x \, dx+\int \frac {-1+x}{x} \, dx\\ &=\frac {1}{3} \int e^{e^x+x} x^2 \, dx+\frac {2}{3} \int e^{e^x} x \, dx+\int \left (1-\frac {1}{x}\right ) \, dx\\ &=x-\log (x)+\frac {1}{3} \int e^{e^x+x} x^2 \, dx+\frac {2}{3} \int e^{e^x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.82 \begin {gather*} x+\frac {1}{3} e^{e^x} x^2-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 14, normalized size = 0.64 \begin {gather*} \frac {1}{3} \, x^{2} e^{\left (e^{x}\right )} + x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 27, normalized size = 1.23 \begin {gather*} \frac {1}{3} \, {\left (x^{2} e^{\left (x + e^{x}\right )} + 3 \, x e^{x} - 3 \, e^{x} \log \relax (x)\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 15, normalized size = 0.68
method | result | size |
norman | \(x +\frac {{\mathrm e}^{{\mathrm e}^{x}} x^{2}}{3}-\ln \relax (x )\) | \(15\) |
risch | \(x +\frac {{\mathrm e}^{{\mathrm e}^{x}} x^{2}}{3}-\ln \relax (x )\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 14, normalized size = 0.64 \begin {gather*} \frac {1}{3} \, x^{2} e^{\left (e^{x}\right )} + x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.70, size = 14, normalized size = 0.64 \begin {gather*} x-\ln \relax (x)+\frac {x^2\,{\mathrm {e}}^{{\mathrm {e}}^x}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 14, normalized size = 0.64 \begin {gather*} \frac {x^{2} e^{e^{x}}}{3} + x - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________