Optimal. Leaf size=26 \[ 4+\frac {10 x^2}{-x+4 x \left (-e^{2 x}+\log (3)\right )} \]
________________________________________________________________________________________
Rubi [C] time = 0.62, antiderivative size = 250, normalized size of antiderivative = 9.62, number of steps used = 18, number of rules used = 13, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.255, Rules used = {6688, 12, 6742, 2184, 2190, 2279, 2391, 2185, 2191, 2282, 36, 29, 31} \begin {gather*} \frac {5 (2-\log (6561)) \text {Li}_2\left (-\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{2 (1-\log (81))^2}-\frac {5 \text {Li}_2\left (-\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{1-4 \log (3)}-\frac {5 x^2 (2-\log (6561))}{(1-\log (81))^2}+\frac {5 (1-2 x)^2}{2 (1-4 \log (3))}+\frac {5 (1-2 x) \log \left (\frac {4 e^{2 x}}{1-4 \log (3)}+1\right )}{1-4 \log (3)}+\frac {5 x (2-\log (6561)) \log \left (\frac {4 e^{2 x}}{1-4 \log (3)}+1\right )}{(1-\log (81))^2}-\frac {5 (2-\log (6561)) \log \left (4 e^{2 x}+1-4 \log (3)\right )}{2 (1-\log (81))^2}-\frac {5 x (2-\log (6561))}{(1-\log (81)) \left (4 e^{2 x}+1-4 \log (3)\right )}+\frac {5 x (2-\log (6561))}{(1-\log (81))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2279
Rule 2282
Rule 2391
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 \left (-1+e^{2 x} (-4+8 x)+\log (81)\right )}{\left (1+4 e^{2 x}-4 \log (3)\right )^2} \, dx\\ &=10 \int \frac {-1+e^{2 x} (-4+8 x)+\log (81)}{\left (1+4 e^{2 x}-4 \log (3)\right )^2} \, dx\\ &=10 \int \left (\frac {-1+2 x}{1+4 e^{2 x}-4 \log (3)}+\frac {x (-2+\log (6561))}{\left (1+4 e^{2 x}-4 \log (3)\right )^2}\right ) \, dx\\ &=10 \int \frac {-1+2 x}{1+4 e^{2 x}-4 \log (3)} \, dx-(10 (2-\log (6561))) \int \frac {x}{\left (1+4 e^{2 x}-4 \log (3)\right )^2} \, dx\\ &=\frac {5 (1-2 x)^2}{2 (1-4 \log (3))}-\frac {40 \int \frac {e^{2 x} (-1+2 x)}{1+4 e^{2 x}-4 \log (3)} \, dx}{1-4 \log (3)}-\frac {(10 (2-\log (6561))) \int \frac {x}{1+4 e^{2 x}-4 \log (3)} \, dx}{1-\log (81)}+\frac {(40 (2-\log (6561))) \int \frac {e^{2 x} x}{\left (1+4 e^{2 x}-4 \log (3)\right )^2} \, dx}{1-\log (81)}\\ &=\frac {5 (1-2 x)^2}{2 (1-4 \log (3))}-\frac {5 x^2 (2-\log (6561))}{(1-\log (81))^2}-\frac {5 x (2-\log (6561))}{\left (1+4 e^{2 x}-4 \log (3)\right ) (1-\log (81))}+\frac {5 (1-2 x) \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{1-4 \log (3)}+\frac {10 \int \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right ) \, dx}{1-4 \log (3)}+\frac {(40 (2-\log (6561))) \int \frac {e^{2 x} x}{1+4 e^{2 x}-4 \log (3)} \, dx}{(1-\log (81))^2}+\frac {(5 (2-\log (6561))) \int \frac {1}{1+4 e^{2 x}-4 \log (3)} \, dx}{1-\log (81)}\\ &=\frac {5 (1-2 x)^2}{2 (1-4 \log (3))}-\frac {5 x^2 (2-\log (6561))}{(1-\log (81))^2}-\frac {5 x (2-\log (6561))}{\left (1+4 e^{2 x}-4 \log (3)\right ) (1-\log (81))}+\frac {5 (1-2 x) \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{1-4 \log (3)}+\frac {5 x (2-\log (6561)) \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{(1-\log (81))^2}+\frac {5 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {4 x}{1-4 \log (3)}\right )}{x} \, dx,x,e^{2 x}\right )}{1-4 \log (3)}-\frac {(5 (2-\log (6561))) \int \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right ) \, dx}{(1-\log (81))^2}+\frac {(5 (2-\log (6561))) \operatorname {Subst}\left (\int \frac {1}{x (1+4 x-4 \log (3))} \, dx,x,e^{2 x}\right )}{2 (1-\log (81))}\\ &=\frac {5 (1-2 x)^2}{2 (1-4 \log (3))}-\frac {5 x^2 (2-\log (6561))}{(1-\log (81))^2}-\frac {5 x (2-\log (6561))}{\left (1+4 e^{2 x}-4 \log (3)\right ) (1-\log (81))}+\frac {5 (1-2 x) \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{1-4 \log (3)}+\frac {5 x (2-\log (6561)) \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{(1-\log (81))^2}-\frac {5 \text {Li}_2\left (-\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{1-4 \log (3)}+\frac {(5 (2-\log (6561))) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x}\right )}{2 (1-\log (81))^2}-\frac {(5 (2-\log (6561))) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {4 x}{1-4 \log (3)}\right )}{x} \, dx,x,e^{2 x}\right )}{2 (1-\log (81))^2}-\frac {(10 (2-\log (6561))) \operatorname {Subst}\left (\int \frac {1}{1+4 x-4 \log (3)} \, dx,x,e^{2 x}\right )}{(1-\log (81))^2}\\ &=\frac {5 (1-2 x)^2}{2 (1-4 \log (3))}+\frac {5 x (2-\log (6561))}{(1-\log (81))^2}-\frac {5 x^2 (2-\log (6561))}{(1-\log (81))^2}-\frac {5 x (2-\log (6561))}{\left (1+4 e^{2 x}-4 \log (3)\right ) (1-\log (81))}+\frac {5 (1-2 x) \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{1-4 \log (3)}+\frac {5 x (2-\log (6561)) \log \left (1+\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{(1-\log (81))^2}-\frac {5 (2-\log (6561)) \log \left (1+4 e^{2 x}-4 \log (3)\right )}{2 (1-\log (81))^2}-\frac {5 \text {Li}_2\left (-\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{1-4 \log (3)}+\frac {5 (2-\log (6561)) \text {Li}_2\left (-\frac {4 e^{2 x}}{1-4 \log (3)}\right )}{2 (1-\log (81))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 18, normalized size = 0.69 \begin {gather*} -\frac {10 x}{1+4 e^{2 x}-\log (81)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.33, size = 17, normalized size = 0.65 \begin {gather*} -\frac {10 \, x}{4 \, e^{\left (2 \, x\right )} - 4 \, \log \relax (3) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 139, normalized size = 5.35 \begin {gather*} -\frac {5 \, {\left (8 \, x \log \relax (3) + 4 \, e^{\left (2 \, x\right )} \log \left (4 \, e^{\left (2 \, x\right )} - 4 \, \log \relax (3) + 1\right ) - 4 \, \log \relax (3) \log \left (4 \, e^{\left (2 \, x\right )} - 4 \, \log \relax (3) + 1\right ) - 4 \, e^{\left (2 \, x\right )} \log \left (-4 \, e^{\left (2 \, x\right )} + 4 \, \log \relax (3) - 1\right ) + 4 \, \log \relax (3) \log \left (-4 \, e^{\left (2 \, x\right )} + 4 \, \log \relax (3) - 1\right ) - 2 \, x + \log \left (4 \, e^{\left (2 \, x\right )} - 4 \, \log \relax (3) + 1\right ) - \log \left (-4 \, e^{\left (2 \, x\right )} + 4 \, \log \relax (3) - 1\right )\right )}}{16 \, e^{\left (2 \, x\right )} \log \relax (3) - 16 \, \log \relax (3)^{2} - 4 \, e^{\left (2 \, x\right )} + 8 \, \log \relax (3) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 18, normalized size = 0.69
method | result | size |
norman | \(\frac {10 x}{-4 \,{\mathrm e}^{2 x}+4 \ln \relax (3)-1}\) | \(18\) |
risch | \(\frac {10 x}{-4 \,{\mathrm e}^{2 x}+4 \ln \relax (3)-1}\) | \(18\) |
default | \(-\frac {10 \ln \left ({\mathrm e}^{x}\right )}{\left (-1+4 \ln \relax (3)\right )^{2}}+\frac {5 \ln \left (4 \,{\mathrm e}^{2 x}-4 \ln \relax (3)+1\right )}{\left (-1+4 \ln \relax (3)\right )^{2}}+\frac {40 \ln \relax (3)}{\left (-1+4 \ln \relax (3)\right )^{2} \left (4 \,{\mathrm e}^{2 x}-4 \ln \relax (3)+1\right )}-\frac {5}{\left (-1+4 \ln \relax (3)\right )^{2} \left (4 \,{\mathrm e}^{2 x}-4 \ln \relax (3)+1\right )}+\frac {5}{4 \,{\mathrm e}^{2 x}-4 \ln \relax (3)+1}+\frac {40 \ln \relax (3) \ln \left ({\mathrm e}^{x}\right )}{\left (-1+4 \ln \relax (3)\right )^{2}}-\frac {20 \ln \relax (3) \ln \left (4 \,{\mathrm e}^{2 x}-4 \ln \relax (3)+1\right )}{\left (-1+4 \ln \relax (3)\right )^{2}}-\frac {80 \ln \relax (3)^{2}}{\left (-1+4 \ln \relax (3)\right )^{2} \left (4 \,{\mathrm e}^{2 x}-4 \ln \relax (3)+1\right )}+\frac {5 \ln \left (-4 \,{\mathrm e}^{2 x}+4 \ln \relax (3)-1\right )}{-1+4 \ln \relax (3)}+\frac {40 x \,{\mathrm e}^{2 x}}{\left (-1+4 \ln \relax (3)\right ) \left (-4 \,{\mathrm e}^{2 x}+4 \ln \relax (3)-1\right )}\) | \(224\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 224, normalized size = 8.62 \begin {gather*} 20 \, {\left (\frac {2 \, x}{16 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 1} - \frac {\log \left (4 \, e^{\left (2 \, x\right )} - 4 \, \log \relax (3) + 1\right )}{16 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 1} - \frac {1}{4 \, {\left (4 \, \log \relax (3) - 1\right )} e^{\left (2 \, x\right )} - 16 \, \log \relax (3)^{2} + 8 \, \log \relax (3) - 1}\right )} \log \relax (3) - \frac {40 \, x e^{\left (2 \, x\right )}}{4 \, {\left (4 \, \log \relax (3) - 1\right )} e^{\left (2 \, x\right )} - 16 \, \log \relax (3)^{2} + 8 \, \log \relax (3) - 1} - \frac {10 \, x}{16 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 1} + \frac {5 \, \log \left (4 \, e^{\left (2 \, x\right )} - 4 \, \log \relax (3) + 1\right )}{16 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 1} + \frac {5 \, \log \left (e^{\left (2 \, x\right )} - \log \relax (3) + \frac {1}{4}\right )}{4 \, \log \relax (3) - 1} + \frac {5}{4 \, {\left (4 \, \log \relax (3) - 1\right )} e^{\left (2 \, x\right )} - 16 \, \log \relax (3)^{2} + 8 \, \log \relax (3) - 1} + \frac {5}{4 \, e^{\left (2 \, x\right )} - 4 \, \log \relax (3) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.25, size = 17, normalized size = 0.65 \begin {gather*} -\frac {10\,x}{4\,{\mathrm {e}}^{2\,x}-\ln \left (81\right )+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.65 \begin {gather*} - \frac {10 x}{4 e^{2 x} - 4 \log {\relax (3 )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________