Optimal. Leaf size=27 \[ e^{x^2 \left (x-e^{-x} \left (-1+(5+x) \log ^2(x)\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 29, normalized size = 1.07 \begin {gather*} e^{e^{-2 x} x^2 \left (1+e^x x-(5+x) \log ^2(x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 2.30, size = 79, normalized size = 2.93 \begin {gather*} e^{\left ({\left ({\left (x^{4} + 10 \, x^{3} + 25 \, x^{2}\right )} \log \relax (x)^{4} + 2 \, x^{3} e^{x} - 2 \, {\left (x^{3} + 5 \, x^{2} + {\left (x^{4} + 5 \, x^{3}\right )} e^{x}\right )} \log \relax (x)^{2} + x^{2} + {\left (x^{4} - 2 \, x\right )} e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x\right )} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -2 \, {\left ({\left (x^{4} + 8 \, x^{3} + 10 \, x^{2} - 25 \, x\right )} \log \relax (x)^{4} - 2 \, x^{3} e^{\left (2 \, x\right )} - 2 \, {\left (x^{3} + 10 \, x^{2} + 25 \, x\right )} \log \relax (x)^{3} - {\left (2 \, x^{3} + 7 \, x^{2} + {\left (x^{4} + x^{3} - 15 \, x^{2}\right )} e^{x} - 10 \, x\right )} \log \relax (x)^{2} + x^{2} + {\left (x^{3} - 3 \, x^{2}\right )} e^{x} + 2 \, {\left (x^{2} + {\left (x^{3} + 5 \, x^{2}\right )} e^{x} + 5 \, x\right )} \log \relax (x) - x\right )} e^{\left ({\left (x^{4} e^{\left (2 \, x\right )} + {\left (x^{4} + 10 \, x^{3} + 25 \, x^{2}\right )} \log \relax (x)^{4} + 2 \, x^{3} e^{x} - 2 \, {\left (x^{3} + 5 \, x^{2} + {\left (x^{4} + 5 \, x^{3}\right )} e^{x}\right )} \log \relax (x)^{2} + x^{2}\right )} e^{\left (-2 \, x\right )} - 2 \, x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.13, size = 82, normalized size = 3.04
method | result | size |
risch | \({\mathrm e}^{-x^{2} \left (-x^{2} \ln \relax (x )^{4}-10 x \ln \relax (x )^{4}+2 x^{2} {\mathrm e}^{x} \ln \relax (x )^{2}-25 \ln \relax (x )^{4}+10 x \,{\mathrm e}^{x} \ln \relax (x )^{2}+2 x \ln \relax (x )^{2}-{\mathrm e}^{2 x} x^{2}+10 \ln \relax (x )^{2}-2 \,{\mathrm e}^{x} x -1\right ) {\mathrm e}^{-2 x}}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.90, size = 112, normalized size = 4.15 \begin {gather*} e^{\left (x^{4} e^{\left (-2 \, x\right )} \log \relax (x)^{4} + 10 \, x^{3} e^{\left (-2 \, x\right )} \log \relax (x)^{4} - 2 \, x^{4} e^{\left (-x\right )} \log \relax (x)^{2} + 25 \, x^{2} e^{\left (-2 \, x\right )} \log \relax (x)^{4} - 10 \, x^{3} e^{\left (-x\right )} \log \relax (x)^{2} - 2 \, x^{3} e^{\left (-2 \, x\right )} \log \relax (x)^{2} - 10 \, x^{2} e^{\left (-2 \, x\right )} \log \relax (x)^{2} + x^{4} + 2 \, x^{3} e^{\left (-x\right )} + x^{2} e^{\left (-2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.92, size = 121, normalized size = 4.48 \begin {gather*} {\mathrm {e}}^{-2\,x^3\,{\mathrm {e}}^{-2\,x}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{-2\,x^4\,{\mathrm {e}}^{-x}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{x^4\,{\mathrm {e}}^{-2\,x}\,{\ln \relax (x)}^4}\,{\mathrm {e}}^{-10\,x^2\,{\mathrm {e}}^{-2\,x}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{-10\,x^3\,{\mathrm {e}}^{-x}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{10\,x^3\,{\mathrm {e}}^{-2\,x}\,{\ln \relax (x)}^4}\,{\mathrm {e}}^{25\,x^2\,{\mathrm {e}}^{-2\,x}\,{\ln \relax (x)}^4}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{-2\,x}}\,{\mathrm {e}}^{2\,x^3\,{\mathrm {e}}^{-x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.71, size = 75, normalized size = 2.78 \begin {gather*} e^{\left (x^{4} e^{2 x} + 2 x^{3} e^{x} + x^{2} + \left (- 2 x^{3} - 10 x^{2} + \left (- 2 x^{4} - 10 x^{3}\right ) e^{x}\right ) \log {\relax (x )}^{2} + \left (x^{4} + 10 x^{3} + 25 x^{2}\right ) \log {\relax (x )}^{4}\right ) e^{- 2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________