Optimal. Leaf size=15 \[ \frac {3}{e^3 x (-3+4 x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {12, 1594, 27, 74} \begin {gather*} -\frac {3}{e^3 (3-4 x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 74
Rule 1594
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {9-24 x}{9 x^2-24 x^3+16 x^4} \, dx}{e^3}\\ &=\frac {\int \frac {9-24 x}{x^2 \left (9-24 x+16 x^2\right )} \, dx}{e^3}\\ &=\frac {\int \frac {9-24 x}{x^2 (-3+4 x)^2} \, dx}{e^3}\\ &=-\frac {3}{e^3 (3-4 x) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 1.00 \begin {gather*} \frac {3}{e^3 x (-3+4 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.35, size = 15, normalized size = 1.00 \begin {gather*} \frac {3 \, e^{\left (-3\right )}}{4 \, x^{2} - 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 15, normalized size = 1.00 \begin {gather*} \frac {3 \, e^{\left (-3\right )}}{4 \, x^{2} - 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 1.00
method | result | size |
risch | \(\frac {3 \,{\mathrm e}^{-3}}{x \left (4 x -3\right )}\) | \(15\) |
gosper | \(\frac {3 \,{\mathrm e}^{-3}}{x \left (4 x -3\right )}\) | \(17\) |
norman | \(\frac {3 \,{\mathrm e}^{-3}}{x \left (4 x -3\right )}\) | \(17\) |
default | \(3 \,{\mathrm e}^{-3} \left (\frac {4}{3 \left (4 x -3\right )}-\frac {1}{3 x}\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 15, normalized size = 1.00 \begin {gather*} \frac {3 \, e^{\left (-3\right )}}{4 \, x^{2} - 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.42, size = 14, normalized size = 0.93 \begin {gather*} \frac {3\,{\mathrm {e}}^{-3}}{x\,\left (4\,x-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 15, normalized size = 1.00 \begin {gather*} \frac {3}{4 x^{2} e^{3} - 3 x e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________