Optimal. Leaf size=24 \[ e^{\frac {1}{5} (-x-x (5+4 x-5 x (2+x)))} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 2, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{5} \left (5 x^3+6 x^2-6 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{\frac {1}{5} \left (-6 x+6 x^2+5 x^3\right )} \left (-6+12 x+15 x^2\right ) \, dx\\ &=e^{\frac {1}{5} \left (-6 x+6 x^2+5 x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 18, normalized size = 0.75 \begin {gather*} e^{-\frac {6 x}{5}+\frac {6 x^2}{5}+x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.38, size = 13, normalized size = 0.54 \begin {gather*} e^{\left (x^{3} + \frac {6}{5} \, x^{2} - \frac {6}{5} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 13, normalized size = 0.54 \begin {gather*} e^{\left (x^{3} + \frac {6}{5} \, x^{2} - \frac {6}{5} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 14, normalized size = 0.58
method | result | size |
gosper | \({\mathrm e}^{x^{3}+\frac {6}{5} x^{2}-\frac {6}{5} x}\) | \(14\) |
norman | \({\mathrm e}^{x^{3}+\frac {6}{5} x^{2}-\frac {6}{5} x}\) | \(14\) |
risch | \({\mathrm e}^{\frac {x \left (5 x^{2}+6 x -6\right )}{5}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 13, normalized size = 0.54 \begin {gather*} e^{\left (x^{3} + \frac {6}{5} \, x^{2} - \frac {6}{5} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 15, normalized size = 0.62 \begin {gather*} {\mathrm {e}}^{-\frac {6\,x}{5}}\,{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{\frac {6\,x^2}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.62 \begin {gather*} e^{x^{3} + \frac {6 x^{2}}{5} - \frac {6 x}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________