Optimal. Leaf size=24 \[ \left (\frac {1}{2}-e^{2 \sqrt {e} (-1+x)}+x\right ) (-4+\log (5)) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 31, normalized size of antiderivative = 1.29, number of steps used = 2, number of rules used = 1, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2194} \begin {gather*} e^{-2 \sqrt {e} (1-x)} (4-\log (5))-x (4-\log (5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x (4-\log (5))+\left (2 \sqrt {e} (4-\log (5))\right ) \int e^{\sqrt {e} (-2+2 x)} \, dx\\ &=e^{-2 \sqrt {e} (1-x)} (4-\log (5))-x (4-\log (5))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.17 \begin {gather*} -\left (\left (e^{-2 \sqrt {e}+2 \sqrt {e} x}-x\right ) (-4+\log (5))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.69, size = 22, normalized size = 0.92 \begin {gather*} -{\left (\log \relax (5) - 4\right )} e^{\left (2 \, {\left (x - 1\right )} e^{\frac {1}{2}}\right )} + x \log \relax (5) - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 30, normalized size = 1.25 \begin {gather*} -{\left (e^{\frac {1}{2}} \log \relax (5) - 4 \, e^{\frac {1}{2}}\right )} e^{\left (2 \, {\left (x - 1\right )} e^{\frac {1}{2}} - \frac {1}{2}\right )} + x \log \relax (5) - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.00
method | result | size |
norman | \(\left (-\ln \relax (5)+4\right ) {\mathrm e}^{\left (2 x -2\right ) {\mathrm e}^{\frac {1}{2}}}+\left (\ln \relax (5)-4\right ) x\) | \(24\) |
risch | \(-{\mathrm e}^{2 \left (x -1\right ) {\mathrm e}^{\frac {1}{2}}} \ln \relax (5)+x \ln \relax (5)+4 \,{\mathrm e}^{2 \left (x -1\right ) {\mathrm e}^{\frac {1}{2}}}-4 x\) | \(31\) |
default | \(-4 x -{\mathrm e}^{\left (2 x -2\right ) {\mathrm e}^{\frac {1}{2}}} \ln \relax (5)+4 \,{\mathrm e}^{\left (2 x -2\right ) {\mathrm e}^{\frac {1}{2}}}+x \ln \relax (5)\) | \(33\) |
derivativedivides | \(\frac {{\mathrm e}^{-\frac {1}{2}} \left (\ln \relax (5)-4\right ) \left (-2 \,{\mathrm e}^{\frac {1}{2}} {\mathrm e}^{\left (2 x -2\right ) {\mathrm e}^{\frac {1}{2}}}+\ln \left ({\mathrm e}^{\left (2 x -2\right ) {\mathrm e}^{\frac {1}{2}}}\right )\right )}{2}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 30, normalized size = 1.25 \begin {gather*} -{\left (e^{\frac {1}{2}} \log \relax (5) - 4 \, e^{\frac {1}{2}}\right )} e^{\left (2 \, {\left (x - 1\right )} e^{\frac {1}{2}} - \frac {1}{2}\right )} + x \log \relax (5) - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 18, normalized size = 0.75 \begin {gather*} \left (x-{\mathrm {e}}^{\sqrt {\mathrm {e}}\,\left (2\,x-2\right )}\right )\,\left (\ln \relax (5)-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 0.92 \begin {gather*} x \left (-4 + \log {\relax (5 )}\right ) + \left (4 - \log {\relax (5 )}\right ) e^{\left (2 x - 2\right ) e^{\frac {1}{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________