Optimal. Leaf size=26 \[ e^{e^{8 x}+\frac {\log (5)}{-1-e^x+\frac {3}{\log (2)}}} \]
________________________________________________________________________________________
Rubi [A] time = 1.12, antiderivative size = 28, normalized size of antiderivative = 1.08, number of steps used = 2, number of rules used = 2, integrand size = 131, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {2282, 6706} \begin {gather*} e^{e^{8 x}} 2^{\frac {\log (5)}{-e^x \log (2)+3-\log (2)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2282
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {e^{x^8-\frac {\log (2) \log (5)}{-3+\log (2)+x \log (2)}} \left (8 x^7 (-3+\log (2))^2+16 x^8 (-3+\log (2)) \log (2)+8 x^9 \log ^2(2)+\log ^2(2) \log (5)\right )}{(3-\log (2)-x \log (2))^2} \, dx,x,e^x\right )\\ &=2^{\frac {\log (5)}{3-\log (2)-e^x \log (2)}} e^{e^{8 x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 26, normalized size = 1.00 \begin {gather*} e^{e^{8 x}-\frac {\log (2) \log (5)}{-3+\log (2)+e^x \log (2)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 36, normalized size = 1.38 \begin {gather*} e^{\left (\frac {{\left (\log \relax (2) - 3\right )} e^{\left (8 \, x\right )} + e^{\left (9 \, x\right )} \log \relax (2) - \log \relax (5) \log \relax (2)}{e^{x} \log \relax (2) + \log \relax (2) - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.73, size = 72, normalized size = 2.77 \begin {gather*} e^{\left (\frac {e^{\left (9 \, x\right )} \log \relax (2)}{e^{x} \log \relax (2) + \log \relax (2) - 3} + \frac {e^{\left (8 \, x\right )} \log \relax (2)}{e^{x} \log \relax (2) + \log \relax (2) - 3} - \frac {\log \relax (5) \log \relax (2)}{e^{x} \log \relax (2) + \log \relax (2) - 3} - \frac {3 \, e^{\left (8 \, x\right )}}{e^{x} \log \relax (2) + \log \relax (2) - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 43, normalized size = 1.65
method | result | size |
risch | \({\mathrm e}^{-\frac {\ln \relax (2) \ln \relax (5)-\ln \relax (2) {\mathrm e}^{8 x}-\ln \relax (2) {\mathrm e}^{9 x}+3 \,{\mathrm e}^{8 x}}{{\mathrm e}^{x} \ln \relax (2)+\ln \relax (2)-3}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 2.25, size = 23, normalized size = 0.88 \begin {gather*} e^{\left (-\frac {\log \relax (5) \log \relax (2)}{e^{x} \log \relax (2) + \log \relax (2) - 3} + e^{\left (8 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.97, size = 47, normalized size = 1.81 \begin {gather*} {\mathrm {e}}^{\frac {\ln \relax (2)\,\left ({\mathrm {e}}^{8\,x}+{\mathrm {e}}^{9\,x}-\ln \relax (5)\right )}{\ln \relax (2)+{\mathrm {e}}^x\,\ln \relax (2)-3}}\,{\mathrm {e}}^{-\frac {3\,{\mathrm {e}}^{8\,x}}{\ln \relax (2)+{\mathrm {e}}^x\,\ln \relax (2)-3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.58, size = 36, normalized size = 1.38 \begin {gather*} e^{\frac {\left (e^{x} \log {\relax (2 )} - 3 + \log {\relax (2 )}\right ) e^{8 x} - \log {\relax (2 )} \log {\relax (5 )}}{e^{x} \log {\relax (2 )} - 3 + \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________