Optimal. Leaf size=28 \[ x+\frac {e^{3-e^{625}-x} \log \left (\frac {e^{2 x}}{x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {6742, 2288} \begin {gather*} x+\frac {e^{-x-e^{625}+3} \log \left (\frac {e^{2 x}}{x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {e^{3-e^{625}-x} \left (-1+2 x-\log \left (\frac {e^{2 x}}{x}\right )-x \log \left (\frac {e^{2 x}}{x}\right )\right )}{x^2}\right ) \, dx\\ &=x+\int \frac {e^{3-e^{625}-x} \left (-1+2 x-\log \left (\frac {e^{2 x}}{x}\right )-x \log \left (\frac {e^{2 x}}{x}\right )\right )}{x^2} \, dx\\ &=x+\frac {e^{3-e^{625}-x} \log \left (\frac {e^{2 x}}{x}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 28, normalized size = 1.00 \begin {gather*} x+\frac {e^{3-e^{625}-x} \log \left (\frac {e^{2 x}}{x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 34, normalized size = 1.21 \begin {gather*} \frac {{\left (x^{2} e^{\left (x + e^{625} - 3\right )} + \log \left (\frac {e^{\left (2 \, x\right )}}{x}\right )\right )} e^{\left (-x - e^{625} + 3\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 35, normalized size = 1.25 \begin {gather*} \frac {x^{2} + 2 \, x e^{\left (-x - e^{625} + 3\right )} - e^{\left (-x - e^{625} + 3\right )} \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 24, normalized size = 0.86
method | result | size |
default | \(x +\frac {\ln \left (\frac {{\mathrm e}^{2 x}}{x}\right ) {\mathrm e}^{-{\mathrm e}^{625}-x +3}}{x}\) | \(24\) |
norman | \(\frac {\left ({\mathrm e}^{x} x^{2}+{\mathrm e}^{-{\mathrm e}^{625}} {\mathrm e}^{3} \ln \left (\frac {{\mathrm e}^{2 x}}{x}\right )\right ) {\mathrm e}^{-x}}{x}\) | \(35\) |
risch | \(\frac {2 \ln \left ({\mathrm e}^{x}\right ) {\mathrm e}^{-{\mathrm e}^{625}-x +3}}{x}-\frac {\left (-2 x^{2} {\mathrm e}^{{\mathrm e}^{625}+x -3}+i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{2}+i \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-2 i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{3}+2 \ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{625}-x +3}}{2 x}\) | \(201\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, {\rm Ei}\left (-x\right ) e^{\left (-e^{625} + 3\right )} + e^{\left (-e^{625} + 3\right )} \Gamma \left (-1, x\right ) + x - \frac {e^{\left (-x - e^{625} + 3\right )} \log \relax (x)}{x} - \int \frac {{\left (2 \, x^{2} e^{3} + 2 \, x e^{3} - e^{3}\right )} e^{\left (-x - e^{625}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.21, size = 34, normalized size = 1.21 \begin {gather*} x+2\,{\mathrm {e}}^{-{\mathrm {e}}^{625}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3+\frac {\ln \left (\frac {1}{x}\right )\,{\mathrm {e}}^{-{\mathrm {e}}^{625}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 27, normalized size = 0.96 \begin {gather*} x + \frac {e^{3} \log {\left (\frac {e^{2 x}}{x} \right )}}{x \sqrt {e^{2 x}} e^{e^{625}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________