Optimal. Leaf size=27 \[ \left (5+\frac {2}{3} \left (1-e^x \left (e^5+x\right ) \log (2)\right )\right ) (-2-\log (x)) \]
________________________________________________________________________________________
Rubi [B] time = 0.39, antiderivative size = 68, normalized size of antiderivative = 2.52, number of steps used = 16, number of rules used = 8, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 14, 6742, 2199, 2194, 2178, 2176, 2554} \begin {gather*} \frac {4}{3} e^x x \log (2)-\frac {2}{3} e^x \log (2) \log (x)+\frac {2}{3} e^x \left (x+e^5+1\right ) \log (2) \log (x)-\frac {17 \log (x)}{3}-2 e^x \log (2)+\frac {2}{3} \left (3+2 e^5\right ) e^x \log (2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-17+e^x \left (6 x+4 x^2+e^5 (2+4 x)\right ) \log (2)+e^x \left (2 x+2 e^5 x+2 x^2\right ) \log (2) \log (x)}{x} \, dx\\ &=\frac {1}{3} \int \left (-\frac {17}{x}+\frac {2 e^x \log (2) \left (e^5+3 \left (1+\frac {2 e^5}{3}\right ) x+2 x^2+\left (1+e^5\right ) x \log (x)+x^2 \log (x)\right )}{x}\right ) \, dx\\ &=-\frac {17 \log (x)}{3}+\frac {1}{3} (2 \log (2)) \int \frac {e^x \left (e^5+3 \left (1+\frac {2 e^5}{3}\right ) x+2 x^2+\left (1+e^5\right ) x \log (x)+x^2 \log (x)\right )}{x} \, dx\\ &=-\frac {17 \log (x)}{3}+\frac {1}{3} (2 \log (2)) \int \left (\frac {e^x \left (e^5+\left (3+2 e^5\right ) x+2 x^2\right )}{x}+e^x \left (1+e^5+x\right ) \log (x)\right ) \, dx\\ &=-\frac {17 \log (x)}{3}+\frac {1}{3} (2 \log (2)) \int \frac {e^x \left (e^5+\left (3+2 e^5\right ) x+2 x^2\right )}{x} \, dx+\frac {1}{3} (2 \log (2)) \int e^x \left (1+e^5+x\right ) \log (x) \, dx\\ &=-\frac {17 \log (x)}{3}-\frac {2}{3} e^x \log (2) \log (x)+\frac {2}{3} e^x \left (1+e^5+x\right ) \log (2) \log (x)-\frac {1}{3} (2 \log (2)) \int \frac {e^x \left (e^5+x\right )}{x} \, dx+\frac {1}{3} (2 \log (2)) \int \left (e^x \left (3+2 e^5\right )+\frac {e^{5+x}}{x}+2 e^x x\right ) \, dx\\ &=-\frac {17 \log (x)}{3}-\frac {2}{3} e^x \log (2) \log (x)+\frac {2}{3} e^x \left (1+e^5+x\right ) \log (2) \log (x)-\frac {1}{3} (2 \log (2)) \int \left (e^x+\frac {e^{5+x}}{x}\right ) \, dx+\frac {1}{3} (2 \log (2)) \int \frac {e^{5+x}}{x} \, dx+\frac {1}{3} (4 \log (2)) \int e^x x \, dx+\frac {1}{3} \left (2 \left (3+2 e^5\right ) \log (2)\right ) \int e^x \, dx\\ &=\frac {2}{3} e^x \left (3+2 e^5\right ) \log (2)+\frac {4}{3} e^x x \log (2)+\frac {2}{3} e^5 \text {Ei}(x) \log (2)-\frac {17 \log (x)}{3}-\frac {2}{3} e^x \log (2) \log (x)+\frac {2}{3} e^x \left (1+e^5+x\right ) \log (2) \log (x)-\frac {1}{3} (2 \log (2)) \int e^x \, dx-\frac {1}{3} (2 \log (2)) \int \frac {e^{5+x}}{x} \, dx-\frac {1}{3} (4 \log (2)) \int e^x \, dx\\ &=-2 e^x \log (2)+\frac {2}{3} e^x \left (3+2 e^5\right ) \log (2)+\frac {4}{3} e^x x \log (2)-\frac {17 \log (x)}{3}-\frac {2}{3} e^x \log (2) \log (x)+\frac {2}{3} e^x \left (1+e^5+x\right ) \log (2) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 33, normalized size = 1.22 \begin {gather*} \frac {1}{3} \left (e^x \left (e^5+x\right ) \log (16)-17 \log (x)+e^x \left (e^5+x\right ) \log (4) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 27, normalized size = 1.00 \begin {gather*} \frac {4}{3} \, {\left (x + e^{5}\right )} e^{x} \log \relax (2) + \frac {1}{3} \, {\left (2 \, {\left (x + e^{5}\right )} e^{x} \log \relax (2) - 17\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 39, normalized size = 1.44 \begin {gather*} \frac {2}{3} \, x e^{x} \log \relax (2) \log \relax (x) + \frac {4}{3} \, x e^{x} \log \relax (2) + \frac {2}{3} \, e^{\left (x + 5\right )} \log \relax (2) \log \relax (x) + \frac {4}{3} \, e^{\left (x + 5\right )} \log \relax (2) - \frac {17}{3} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 33, normalized size = 1.22
method | result | size |
risch | \(\frac {2 \ln \relax (2) \left ({\mathrm e}^{5}+x \right ) {\mathrm e}^{x} \ln \relax (x )}{3}+\frac {4 \ln \relax (2) {\mathrm e}^{5+x}}{3}+\frac {4 x \ln \relax (2) {\mathrm e}^{x}}{3}-\frac {17 \ln \relax (x )}{3}\) | \(33\) |
default | \(\frac {4 x \ln \relax (2) {\mathrm e}^{x}}{3}+\frac {4 \,{\mathrm e}^{5} {\mathrm e}^{x} \ln \relax (2)}{3}+\frac {2 x \ln \relax (2) {\mathrm e}^{x} \ln \relax (x )}{3}+\frac {2 \,{\mathrm e}^{5} \ln \relax (2) {\mathrm e}^{x} \ln \relax (x )}{3}-\frac {17 \ln \relax (x )}{3}\) | \(40\) |
norman | \(\frac {4 x \ln \relax (2) {\mathrm e}^{x}}{3}+\frac {4 \,{\mathrm e}^{5} {\mathrm e}^{x} \ln \relax (2)}{3}+\frac {2 x \ln \relax (2) {\mathrm e}^{x} \ln \relax (x )}{3}+\frac {2 \,{\mathrm e}^{5} \ln \relax (2) {\mathrm e}^{x} \ln \relax (x )}{3}-\frac {17 \ln \relax (x )}{3}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {2}{3} \, {\rm Ei}\relax (x) e^{5} \log \relax (2) + \frac {4}{3} \, {\left (x - 1\right )} e^{x} \log \relax (2) + \frac {2}{3} \, {\left (x \log \relax (2) + e^{5} \log \relax (2) - \log \relax (2)\right )} e^{x} \log \relax (x) + \frac {2}{3} \, e^{x} \log \relax (2) \log \relax (x) - \frac {2}{3} \, {\rm Ei}\relax (x) \log \relax (2) + \frac {4}{3} \, e^{\left (x + 5\right )} \log \relax (2) + 2 \, e^{x} \log \relax (2) - \frac {1}{3} \, \int \frac {2 \, {\left (x \log \relax (2) + e^{5} \log \relax (2) - \log \relax (2)\right )} e^{x}}{x}\,{d x} - \frac {17}{3} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.40, size = 39, normalized size = 1.44 \begin {gather*} \frac {4\,{\mathrm {e}}^{x+5}\,\ln \relax (2)}{3}-\frac {17\,\ln \relax (x)}{3}+\frac {4\,x\,{\mathrm {e}}^x\,\ln \relax (2)}{3}+\frac {2\,{\mathrm {e}}^{x+5}\,\ln \relax (2)\,\ln \relax (x)}{3}+\frac {2\,x\,{\mathrm {e}}^x\,\ln \relax (2)\,\ln \relax (x)}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 48, normalized size = 1.78 \begin {gather*} \frac {\left (2 x \log {\relax (2 )} \log {\relax (x )} + 4 x \log {\relax (2 )} + 2 e^{5} \log {\relax (2 )} \log {\relax (x )} + 4 e^{5} \log {\relax (2 )}\right ) e^{x}}{3} - \frac {17 \log {\relax (x )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________