Optimal. Leaf size=28 \[ \frac {x}{-28+e^{4-\left (-3+\frac {4 x}{5}\right )^2+x+x \log (3 x)}} \]
________________________________________________________________________________________
Rubi [F] time = 3.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-700+e^{\frac {1}{25} \left (-125+145 x-16 x^2+25 x \log (3 x)\right )} \left (25-170 x+32 x^2-25 x \log (3 x)\right )}{19600-1400 e^{\frac {1}{25} \left (-125+145 x-16 x^2+25 x \log (3 x)\right )}+25 e^{\frac {2}{25} \left (-125+145 x-16 x^2+25 x \log (3 x)\right )}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{10+\frac {32 x^2}{25}} \left (-700+e^{\frac {1}{25} \left (-125+145 x-16 x^2+25 x \log (3 x)\right )} \left (25-170 x+32 x^2-25 x \log (3 x)\right )\right )}{25 \left (28 e^{5+\frac {16 x^2}{25}}-3^x e^{29 x/5} x^x\right )^2} \, dx\\ &=\frac {1}{25} \int \frac {e^{10+\frac {32 x^2}{25}} \left (-700+e^{\frac {1}{25} \left (-125+145 x-16 x^2+25 x \log (3 x)\right )} \left (25-170 x+32 x^2-25 x \log (3 x)\right )\right )}{\left (28 e^{5+\frac {16 x^2}{25}}-3^x e^{29 x/5} x^x\right )^2} \, dx\\ &=\frac {1}{25} \int \left (-\frac {700 e^{10+\frac {32 x^2}{25}}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2}+\frac {25\ 3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^x}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2}-\frac {170\ 3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2}+\frac {32\ 3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^{2+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2}-\frac {25\ 3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^{1+x} \log (3 x)}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2}\right ) \, dx\\ &=\frac {32}{25} \int \frac {3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^{2+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-\frac {34}{5} \int \frac {3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-28 \int \frac {e^{10+\frac {32 x^2}{25}}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx+\int \frac {3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^x}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-\int \frac {3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^{1+x} \log (3 x)}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx\\ &=\frac {32}{25} \int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{2+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-\frac {34}{5} \int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-28 \int \frac {e^{10+\frac {32 x^2}{25}}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx+\int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^x}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-\int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{1+x} \log (3 x)}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx\\ &=\frac {32}{25} \int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{2+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-\frac {34}{5} \int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-28 \int \frac {e^{10+\frac {32 x^2}{25}}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-\log (3 x) \int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx+\int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^x}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx+\int \frac {\int \frac {3^x e^{5+\frac {29 x}{5}+\frac {16 x^2}{25}} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx}{x} \, dx\\ &=\frac {32}{25} \int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{2+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-\frac {34}{5} \int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-28 \int \frac {e^{10+\frac {32 x^2}{25}}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx-\log (3 x) \int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx+\int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^x}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx+\int \frac {\int \frac {e^{5+\frac {16 x^2}{25}+\frac {1}{5} x (29+\log (243))} x^{1+x}}{\left (-28 e^{5+\frac {16 x^2}{25}}+3^x e^{29 x/5} x^x\right )^2} \, dx}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 45, normalized size = 1.61 \begin {gather*} -\frac {e^{5+\frac {16 x^2}{25}} x}{28 e^{5+\frac {16 x^2}{25}}-3^x e^{29 x/5} x^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.44, size = 23, normalized size = 0.82 \begin {gather*} \frac {x}{e^{\left (-\frac {16}{25} \, x^{2} + x \log \left (3 \, x\right ) + \frac {29}{5} \, x - 5\right )} - 28} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 30, normalized size = 1.07 \begin {gather*} -\frac {x e^{5}}{28 \, e^{5} - e^{\left (-\frac {16}{25} \, x^{2} + x \log \left (3 \, x\right ) + \frac {29}{5} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 0.86
method | result | size |
norman | \(\frac {x}{{\mathrm e}^{x \ln \left (3 x \right )-\frac {16 x^{2}}{25}+\frac {29 x}{5}-5}-28}\) | \(24\) |
risch | \(\frac {x}{\left (3 x \right )^{x} {\mathrm e}^{-5-\frac {16}{25} x^{2}+\frac {29}{5} x}-28}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 39, normalized size = 1.39 \begin {gather*} -\frac {x e^{\left (\frac {16}{25} \, x^{2} + 5\right )}}{28 \, e^{\left (\frac {16}{25} \, x^{2} + 5\right )} - e^{\left (x \log \relax (3) + x \log \relax (x) + \frac {29}{5} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.08, size = 51, normalized size = 1.82 \begin {gather*} \frac {170\,x+25\,x\,\ln \left (3\,x\right )-32\,x^2}{\left ({\mathrm {e}}^{-\frac {16\,x^2}{25}+\frac {29\,x}{5}-5}\,{\left (3\,x\right )}^x-28\right )\,\left (25\,\ln \left (3\,x\right )-32\,x+170\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 24, normalized size = 0.86 \begin {gather*} \frac {x}{e^{- \frac {16 x^{2}}{25} + x \log {\left (3 x \right )} + \frac {29 x}{5} - 5} - 28} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________