Optimal. Leaf size=24 \[ \frac {(-2+8 x)^2}{6561 x^2 (-3+x+\log (x+\log (x)))^4} \]
________________________________________________________________________________________
Rubi [F] time = 5.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16+136 x-248 x^2-96 x^3-256 x^4+\left (24-120 x+160 x^2-256 x^3\right ) \log (x)+\left (-8 x+32 x^2+(-8+32 x) \log (x)\right ) \log (x+\log (x))}{-1594323 x^4+2657205 x^5-1771470 x^6+590490 x^7-98415 x^8+6561 x^9+\left (-1594323 x^3+2657205 x^4-1771470 x^5+590490 x^6-98415 x^7+6561 x^8\right ) \log (x)+\left (2657205 x^4-3542940 x^5+1771470 x^6-393660 x^7+32805 x^8+\left (2657205 x^3-3542940 x^4+1771470 x^5-393660 x^6+32805 x^7\right ) \log (x)\right ) \log (x+\log (x))+\left (-1771470 x^4+1771470 x^5-590490 x^6+65610 x^7+\left (-1771470 x^3+1771470 x^4-590490 x^5+65610 x^6\right ) \log (x)\right ) \log ^2(x+\log (x))+\left (590490 x^4-393660 x^5+65610 x^6+\left (590490 x^3-393660 x^4+65610 x^5\right ) \log (x)\right ) \log ^3(x+\log (x))+\left (-98415 x^4+32805 x^5+\left (-98415 x^3+32805 x^4\right ) \log (x)\right ) \log ^4(x+\log (x))+\left (6561 x^4+6561 x^3 \log (x)\right ) \log ^5(x+\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 (1-4 x) \left (2-9 x-5 x^2-8 x^3-\log (x) \left (3-3 x+8 x^2-\log (x+\log (x))\right )+x \log (x+\log (x))\right )}{6561 x^3 (x+\log (x)) (3-x-\log (x+\log (x)))^5} \, dx\\ &=\frac {8 \int \frac {(1-4 x) \left (2-9 x-5 x^2-8 x^3-\log (x) \left (3-3 x+8 x^2-\log (x+\log (x))\right )+x \log (x+\log (x))\right )}{x^3 (x+\log (x)) (3-x-\log (x+\log (x)))^5} \, dx}{6561}\\ &=\frac {8 \int \left (-\frac {2 (-1+4 x)^2 \left (1+x+x^2+x \log (x)\right )}{x^3 (x+\log (x)) (-3+x+\log (x+\log (x)))^5}+\frac {-1+4 x}{x^3 (-3+x+\log (x+\log (x)))^4}\right ) \, dx}{6561}\\ &=\frac {8 \int \frac {-1+4 x}{x^3 (-3+x+\log (x+\log (x)))^4} \, dx}{6561}-\frac {16 \int \frac {(-1+4 x)^2 \left (1+x+x^2+x \log (x)\right )}{x^3 (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}\\ &=\frac {8 \int \left (-\frac {1}{x^3 (-3+x+\log (x+\log (x)))^4}+\frac {4}{x^2 (-3+x+\log (x+\log (x)))^4}\right ) \, dx}{6561}-\frac {16 \int \left (\frac {1+x+x^2+x \log (x)}{x^3 (x+\log (x)) (-3+x+\log (x+\log (x)))^5}-\frac {8 \left (1+x+x^2+x \log (x)\right )}{x^2 (x+\log (x)) (-3+x+\log (x+\log (x)))^5}+\frac {16 \left (1+x+x^2+x \log (x)\right )}{x (x+\log (x)) (-3+x+\log (x+\log (x)))^5}\right ) \, dx}{6561}\\ &=-\frac {8 \int \frac {1}{x^3 (-3+x+\log (x+\log (x)))^4} \, dx}{6561}-\frac {16 \int \frac {1+x+x^2+x \log (x)}{x^3 (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}+\frac {32 \int \frac {1}{x^2 (-3+x+\log (x+\log (x)))^4} \, dx}{6561}+\frac {128 \int \frac {1+x+x^2+x \log (x)}{x^2 (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}-\frac {256 \int \frac {1+x+x^2+x \log (x)}{x (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}\\ &=\frac {64}{6561 (3-x-\log (x+\log (x)))^4}-\frac {8 \int \frac {1}{x^3 (-3+x+\log (x+\log (x)))^4} \, dx}{6561}-\frac {16 \int \left (\frac {1}{x^3 (x+\log (x)) (-3+x+\log (x+\log (x)))^5}+\frac {1}{x^2 (x+\log (x)) (-3+x+\log (x+\log (x)))^5}+\frac {1}{x (x+\log (x)) (-3+x+\log (x+\log (x)))^5}+\frac {\log (x)}{x^2 (x+\log (x)) (-3+x+\log (x+\log (x)))^5}\right ) \, dx}{6561}+\frac {32 \int \frac {1}{x^2 (-3+x+\log (x+\log (x)))^4} \, dx}{6561}+\frac {128 \int \left (\frac {1}{(x+\log (x)) (-3+x+\log (x+\log (x)))^5}+\frac {1}{x^2 (x+\log (x)) (-3+x+\log (x+\log (x)))^5}+\frac {1}{x (x+\log (x)) (-3+x+\log (x+\log (x)))^5}+\frac {\log (x)}{x (x+\log (x)) (-3+x+\log (x+\log (x)))^5}\right ) \, dx}{6561}\\ &=\frac {64}{6561 (3-x-\log (x+\log (x)))^4}-\frac {8 \int \frac {1}{x^3 (-3+x+\log (x+\log (x)))^4} \, dx}{6561}-\frac {16 \int \frac {1}{x^3 (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}-\frac {16 \int \frac {1}{x^2 (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}-\frac {16 \int \frac {1}{x (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}-\frac {16 \int \frac {\log (x)}{x^2 (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}+\frac {32 \int \frac {1}{x^2 (-3+x+\log (x+\log (x)))^4} \, dx}{6561}+\frac {128 \int \frac {1}{(x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}+\frac {128 \int \frac {1}{x^2 (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}+\frac {128 \int \frac {1}{x (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}+\frac {128 \int \frac {\log (x)}{x (x+\log (x)) (-3+x+\log (x+\log (x)))^5} \, dx}{6561}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.07, size = 24, normalized size = 1.00 \begin {gather*} \frac {4 (-1+4 x)^2}{6561 x^2 (-3+x+\log (x+\log (x)))^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 116, normalized size = 4.83 \begin {gather*} \frac {4 \, {\left (16 \, x^{2} - 8 \, x + 1\right )}}{6561 \, {\left (x^{6} + x^{2} \log \left (x + \log \relax (x)\right )^{4} - 12 \, x^{5} + 54 \, x^{4} + 4 \, {\left (x^{3} - 3 \, x^{2}\right )} \log \left (x + \log \relax (x)\right )^{3} - 108 \, x^{3} + 6 \, {\left (x^{4} - 6 \, x^{3} + 9 \, x^{2}\right )} \log \left (x + \log \relax (x)\right )^{2} + 81 \, x^{2} + 4 \, {\left (x^{5} - 9 \, x^{4} + 27 \, x^{3} - 27 \, x^{2}\right )} \log \left (x + \log \relax (x)\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.37, size = 432, normalized size = 18.00 \begin {gather*} \frac {4 \, {\left (16 \, x^{4} + 16 \, x^{3} \log \relax (x) + 8 \, x^{3} - 8 \, x^{2} \log \relax (x) + 9 \, x^{2} + x \log \relax (x) - 7 \, x + 1\right )}}{6561 \, {\left (x^{8} + 4 \, x^{7} \log \left (x + \log \relax (x)\right ) + 6 \, x^{6} \log \left (x + \log \relax (x)\right )^{2} + 4 \, x^{5} \log \left (x + \log \relax (x)\right )^{3} + x^{4} \log \left (x + \log \relax (x)\right )^{4} + x^{7} \log \relax (x) + 4 \, x^{6} \log \left (x + \log \relax (x)\right ) \log \relax (x) + 6 \, x^{5} \log \left (x + \log \relax (x)\right )^{2} \log \relax (x) + 4 \, x^{4} \log \left (x + \log \relax (x)\right )^{3} \log \relax (x) + x^{3} \log \left (x + \log \relax (x)\right )^{4} \log \relax (x) - 11 \, x^{7} - 32 \, x^{6} \log \left (x + \log \relax (x)\right ) - 30 \, x^{5} \log \left (x + \log \relax (x)\right )^{2} - 8 \, x^{4} \log \left (x + \log \relax (x)\right )^{3} + x^{3} \log \left (x + \log \relax (x)\right )^{4} - 12 \, x^{6} \log \relax (x) - 36 \, x^{5} \log \left (x + \log \relax (x)\right ) \log \relax (x) - 36 \, x^{4} \log \left (x + \log \relax (x)\right )^{2} \log \relax (x) - 12 \, x^{3} \log \left (x + \log \relax (x)\right )^{3} \log \relax (x) + 43 \, x^{6} + 76 \, x^{5} \log \left (x + \log \relax (x)\right ) + 24 \, x^{4} \log \left (x + \log \relax (x)\right )^{2} - 8 \, x^{3} \log \left (x + \log \relax (x)\right )^{3} + x^{2} \log \left (x + \log \relax (x)\right )^{4} + 54 \, x^{5} \log \relax (x) + 108 \, x^{4} \log \left (x + \log \relax (x)\right ) \log \relax (x) + 54 \, x^{3} \log \left (x + \log \relax (x)\right )^{2} \log \relax (x) - 66 \, x^{5} - 36 \, x^{4} \log \left (x + \log \relax (x)\right ) + 18 \, x^{3} \log \left (x + \log \relax (x)\right )^{2} - 12 \, x^{2} \log \left (x + \log \relax (x)\right )^{3} - 108 \, x^{4} \log \relax (x) - 108 \, x^{3} \log \left (x + \log \relax (x)\right ) \log \relax (x) + 27 \, x^{4} + 54 \, x^{2} \log \left (x + \log \relax (x)\right )^{2} + 81 \, x^{3} \log \relax (x) - 27 \, x^{3} - 108 \, x^{2} \log \left (x + \log \relax (x)\right ) + 81 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 1.08
method | result | size |
risch | \(\frac {\frac {64}{6561} x^{2}-\frac {32}{6561} x +\frac {4}{6561}}{x^{2} \left (x +\ln \left (x +\ln \relax (x )\right )-3\right )^{4}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.58, size = 116, normalized size = 4.83 \begin {gather*} \frac {4 \, {\left (16 \, x^{2} - 8 \, x + 1\right )}}{6561 \, {\left (x^{6} + x^{2} \log \left (x + \log \relax (x)\right )^{4} - 12 \, x^{5} + 54 \, x^{4} + 4 \, {\left (x^{3} - 3 \, x^{2}\right )} \log \left (x + \log \relax (x)\right )^{3} - 108 \, x^{3} + 6 \, {\left (x^{4} - 6 \, x^{3} + 9 \, x^{2}\right )} \log \left (x + \log \relax (x)\right )^{2} + 81 \, x^{2} + 4 \, {\left (x^{5} - 9 \, x^{4} + 27 \, x^{3} - 27 \, x^{2}\right )} \log \left (x + \log \relax (x)\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {248\,x^2-\ln \left (x+\ln \relax (x)\right )\,\left (\ln \relax (x)\,\left (32\,x-8\right )-8\,x+32\,x^2\right )-136\,x+96\,x^3+256\,x^4+\ln \relax (x)\,\left (256\,x^3-160\,x^2+120\,x-24\right )+16}{{\ln \left (x+\ln \relax (x)\right )}^3\,\left (\ln \relax (x)\,\left (65610\,x^5-393660\,x^4+590490\,x^3\right )+590490\,x^4-393660\,x^5+65610\,x^6\right )+{\ln \left (x+\ln \relax (x)\right )}^5\,\left (6561\,x^3\,\ln \relax (x)+6561\,x^4\right )-{\ln \left (x+\ln \relax (x)\right )}^2\,\left (\ln \relax (x)\,\left (-65610\,x^6+590490\,x^5-1771470\,x^4+1771470\,x^3\right )+1771470\,x^4-1771470\,x^5+590490\,x^6-65610\,x^7\right )+\ln \left (x+\ln \relax (x)\right )\,\left (\ln \relax (x)\,\left (32805\,x^7-393660\,x^6+1771470\,x^5-3542940\,x^4+2657205\,x^3\right )+2657205\,x^4-3542940\,x^5+1771470\,x^6-393660\,x^7+32805\,x^8\right )-{\ln \left (x+\ln \relax (x)\right )}^4\,\left (\ln \relax (x)\,\left (98415\,x^3-32805\,x^4\right )+98415\,x^4-32805\,x^5\right )-1594323\,x^4+2657205\,x^5-1771470\,x^6+590490\,x^7-98415\,x^8+6561\,x^9-\ln \relax (x)\,\left (-6561\,x^8+98415\,x^7-590490\,x^6+1771470\,x^5-2657205\,x^4+1594323\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.70, size = 117, normalized size = 4.88 \begin {gather*} \frac {64 x^{2} - 32 x + 4}{6561 x^{6} - 78732 x^{5} + 354294 x^{4} - 708588 x^{3} + 6561 x^{2} \log {\left (x + \log {\relax (x )} \right )}^{4} + 531441 x^{2} + \left (26244 x^{3} - 78732 x^{2}\right ) \log {\left (x + \log {\relax (x )} \right )}^{3} + \left (39366 x^{4} - 236196 x^{3} + 354294 x^{2}\right ) \log {\left (x + \log {\relax (x )} \right )}^{2} + \left (26244 x^{5} - 236196 x^{4} + 708588 x^{3} - 708588 x^{2}\right ) \log {\left (x + \log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________