Optimal. Leaf size=23 \[ \frac {e^x}{\log \left (\frac {10 x^3 \left (x+x^2\right )}{x+\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 17.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{x (1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\\ &=\int \left (\frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)+x^2 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^3 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^2 \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)+x^2 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^3 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^2 \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx\\ &=\int \frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)+x^2 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^3 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^2 \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)+x^2 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^3 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^2 \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\\ &=\int \frac {e^x \left (1-2 x-4 x^2+x^2 (1+x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+\log (x) \left (-4-5 x+x (1+x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x \left (1-2 x-4 x^2+x^2 (1+x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+\log (x) \left (-4-5 x+x (1+x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\\ &=-\int \left (\frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx+\int \left (\frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x (1+x)}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx\\ &=\int \frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x (1+x)}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\\ &=\int \left (-\frac {2 e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {4 e^x x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {5 e^x \log (x)}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {4 e^x \log (x)}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-\int \left (\frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {2 e^x x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {4 e^x x^2}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {4 e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {5 e^x x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx+\int \left (\frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-\int \frac {e^x x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\\ &=-\left (2 \int \frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\right )+2 \int \frac {e^x x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-4 \int \frac {e^x x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x x^2}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-4 \int \frac {e^x \log (x)}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-5 \int \frac {e^x \log (x)}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+5 \int \frac {e^x x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\\ &=2 \int \left (\frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-2 \int \frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \left (-\frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-4 \int \frac {e^x x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-4 \int \frac {e^x \log (x)}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+5 \int \left (\frac {e^x \log (x)}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-5 \int \frac {e^x \log (x)}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\\ &=-\left (2 \int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\right )-4 \int \frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-4 \int \frac {e^x \log (x)}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-5 \int \frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 21, normalized size = 0.91 \begin {gather*} \frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 21, normalized size = 0.91 \begin {gather*} \frac {e^{x}}{\log \left (\frac {10 \, {\left (x^{5} + x^{4}\right )}}{x + \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 23, normalized size = 1.00 \begin {gather*} \frac {e^{x}}{\log \left (10 \, x + 10\right ) - \log \left (x + \log \relax (x)\right ) + 4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 441, normalized size = 19.17
method | result | size |
risch | \(\frac {2 i {\mathrm e}^{x}}{\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x +\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x +\ln \relax (x )}\right )+\pi \,\mathrm {csgn}\left (i x^{4}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x +\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x^{4} \left (x +1\right )}{x +\ln \relax (x )}\right )+2 i \ln \relax (2)+2 i \ln \relax (5)+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i x^{4} \left (x +1\right )}{x +\ln \relax (x )}\right )^{3}+\pi \mathrm {csgn}\left (i x^{4}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x +\ln \relax (x )}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i}{x +\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x +\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x +\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{4}\right ) \mathrm {csgn}\left (\frac {i x^{4} \left (x +1\right )}{x +\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i \left (x +1\right )}{x +\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x^{4} \left (x +1\right )}{x +\ln \relax (x )}\right )^{2}+\pi \mathrm {csgn}\left (i x^{3}\right )^{3}-2 i \ln \left (x +\ln \relax (x )\right )+2 i \ln \left (x +1\right )+8 i \ln \relax (x )}\) | \(441\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 25, normalized size = 1.09 \begin {gather*} \frac {e^{x}}{\log \relax (5) + \log \relax (2) - \log \left (x + \log \relax (x)\right ) + \log \left (x + 1\right ) + 4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.25, size = 24, normalized size = 1.04 \begin {gather*} \frac {{\mathrm {e}}^x}{\ln \left (\frac {10\,x^5+10\,x^4}{x+\ln \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.72, size = 19, normalized size = 0.83 \begin {gather*} \frac {e^{x}}{\log {\left (\frac {10 x^{5} + 10 x^{4}}{x + \log {\relax (x )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________