Optimal. Leaf size=20 \[ \log \left (4 x^3 \left (-1-2 x+e^{-x} x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x^2+x^3+e^x (3+8 x)}{-x^3+e^x \left (x+2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3+8 x}{x (1+2 x)}-\frac {x \left (-2-x+2 x^2\right )}{(1+2 x) \left (-e^x-2 e^x x+x^2\right )}\right ) \, dx\\ &=\int \frac {3+8 x}{x (1+2 x)} \, dx-\int \frac {x \left (-2-x+2 x^2\right )}{(1+2 x) \left (-e^x-2 e^x x+x^2\right )} \, dx\\ &=\int \left (\frac {3}{x}+\frac {2}{1+2 x}\right ) \, dx-\int \left (\frac {1}{2 \left (e^x+2 e^x x-x^2\right )}-\frac {x}{-e^x-2 e^x x+x^2}+\frac {x^2}{-e^x-2 e^x x+x^2}+\frac {1}{2 (1+2 x) \left (-e^x-2 e^x x+x^2\right )}\right ) \, dx\\ &=3 \log (x)+\log (1+2 x)-\frac {1}{2} \int \frac {1}{e^x+2 e^x x-x^2} \, dx-\frac {1}{2} \int \frac {1}{(1+2 x) \left (-e^x-2 e^x x+x^2\right )} \, dx+\int \frac {x}{-e^x-2 e^x x+x^2} \, dx-\int \frac {x^2}{-e^x-2 e^x x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 24, normalized size = 1.20 \begin {gather*} -x+3 \log (x)+\log \left (e^x+2 e^x x-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 37, normalized size = 1.85 \begin {gather*} -x + \log \left (2 \, x + 1\right ) + 3 \, \log \relax (x) + \log \left (-\frac {x^{2} - {\left (2 \, x + 1\right )} e^{x}}{2 \, x + 1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 22, normalized size = 1.10 \begin {gather*} -x + \log \left (-x^{2} + 2 \, x e^{x} + e^{x}\right ) + 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.15
method | result | size |
norman | \(-x +3 \ln \relax (x )+\ln \left (x^{2}-2 \,{\mathrm e}^{x} x -{\mathrm e}^{x}\right )\) | \(23\) |
risch | \(3 \ln \relax (x )+\ln \left (2 x +1\right )-x +\ln \left ({\mathrm e}^{x}-\frac {x^{2}}{2 x +1}\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 37, normalized size = 1.85 \begin {gather*} -x + \log \left (2 \, x + 1\right ) + 3 \, \log \relax (x) + \log \left (-\frac {x^{2} - {\left (2 \, x + 1\right )} e^{x}}{2 \, x + 1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 22, normalized size = 1.10 \begin {gather*} \ln \left (x^2-2\,x\,{\mathrm {e}}^x-{\mathrm {e}}^x\right )-x+3\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 26, normalized size = 1.30 \begin {gather*} - x + 3 \log {\relax (x )} + \log {\left (x + \frac {1}{2} \right )} + \log {\left (- \frac {x^{2}}{2 x + 1} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________