Optimal. Leaf size=33 \[ \log \left (3-\frac {e^{4-i \pi +\frac {3 x}{2}-\frac {x}{\log (x)}}}{-1+2 e}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-2 x+(8+3 x-2 (i \pi +\log (-1+2 e))) \log (x)}{2 \log (x)}\right ) \left (2-2 \log (x)+3 \log ^2(x)\right )}{-6 \log ^2(x)+2 \exp \left (\frac {-2 x+(8+3 x-2 (i \pi +\log (-1+2 e))) \log (x)}{2 \log (x)}\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4+\frac {3 x}{2}} \left (2-2 \log (x)+3 \log ^2(x)\right )}{2 \left (e^{4+\frac {3 x}{2}}+3 e^{\frac {x}{\log (x)}} (-1+2 e)\right ) \log ^2(x)} \, dx\\ &=\frac {1}{2} \int \frac {e^{4+\frac {3 x}{2}} \left (2-2 \log (x)+3 \log ^2(x)\right )}{\left (e^{4+\frac {3 x}{2}}+3 e^{\frac {x}{\log (x)}} (-1+2 e)\right ) \log ^2(x)} \, dx\\ &=\frac {1}{2} \int \left (\frac {3 e^{4+\frac {3 x}{2}}}{e^{4+\frac {3 x}{2}}+6 \left (1-\frac {1}{2 e}\right ) e^{1+\frac {x}{\log (x)}}}+\frac {2 e^{4+\frac {3 x}{2}}}{\left (e^{4+\frac {3 x}{2}}+6 \left (1-\frac {1}{2 e}\right ) e^{1+\frac {x}{\log (x)}}\right ) \log ^2(x)}+\frac {2 e^{4+\frac {3 x}{2}}}{\left (-e^{4+\frac {3 x}{2}}-6 \left (1-\frac {1}{2 e}\right ) e^{1+\frac {x}{\log (x)}}\right ) \log (x)}\right ) \, dx\\ &=\frac {3}{2} \int \frac {e^{4+\frac {3 x}{2}}}{e^{4+\frac {3 x}{2}}+6 \left (1-\frac {1}{2 e}\right ) e^{1+\frac {x}{\log (x)}}} \, dx+\int \frac {e^{4+\frac {3 x}{2}}}{\left (e^{4+\frac {3 x}{2}}+6 \left (1-\frac {1}{2 e}\right ) e^{1+\frac {x}{\log (x)}}\right ) \log ^2(x)} \, dx+\int \frac {e^{4+\frac {3 x}{2}}}{\left (-e^{4+\frac {3 x}{2}}-6 \left (1-\frac {1}{2 e}\right ) e^{1+\frac {x}{\log (x)}}\right ) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.69, size = 47, normalized size = 1.42 \begin {gather*} \frac {1}{2} \left (2 \log \left (e^{4+\frac {3 x}{2}}+6 e^{1+\frac {x}{\log (x)}}-3 e^{\frac {x}{\log (x)}}\right )-\frac {2 x}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 31, normalized size = 0.94 \begin {gather*} \log \left (e^{\left (\frac {{\left (3 \, x - 2 \, \log \left (-2 \, e + 1\right ) + 8\right )} \log \relax (x) - 2 \, x}{2 \, \log \relax (x)}\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 0.97
method | result | size |
norman | \(\ln \left ({\mathrm e}^{\frac {\left (-2 \ln \left (-2 \,{\mathrm e}+1\right )+3 x +8\right ) \ln \relax (x )-2 x}{2 \ln \relax (x )}}-3\right )\) | \(32\) |
risch | \(\frac {3 x}{2}-\frac {x}{\ln \relax (x )}-\frac {\left (-2 \ln \left (-2 \,{\mathrm e}+1\right )+3 x +8\right ) \ln \relax (x )-2 x}{2 \ln \relax (x )}+\ln \left (\frac {{\mathrm e}^{\frac {3 x \ln \relax (x )+8 \ln \relax (x )-2 x}{2 \ln \relax (x )}}}{-2 \,{\mathrm e}+1}-3\right )\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 41, normalized size = 1.24 \begin {gather*} -\frac {x}{\log \relax (x)} + \log \left (\frac {3 \, {\left (2 \, e - 1\right )} e^{\frac {x}{\log \relax (x)}} + e^{\left (\frac {3}{2} \, x + 4\right )}}{3 \, {\left (2 \, e - 1\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.09, size = 27, normalized size = 0.82 \begin {gather*} \ln \left (-\frac {{\mathrm {e}}^4\,{\mathrm {e}}^{-\frac {x}{\ln \relax (x)}}\,{\left ({\mathrm {e}}^x\right )}^{3/2}}{2\,\mathrm {e}-1}-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 29, normalized size = 0.88 \begin {gather*} - \frac {x}{\log {\relax (x )}} + \log {\left (\frac {e^{4} e^{\frac {3 x}{2}}}{-3 + 6 e} + e^{\frac {x}{\log {\relax (x )}}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________