Optimal. Leaf size=21 \[ \left (-3+(12-x)^2\right ) \log \left (-1+\log \left (\left (-1+\frac {1}{x}\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {282-48 x+2 x^2+\left (-24 x+26 x^2-2 x^3+\left (24 x-26 x^2+2 x^3\right ) \log \left (\frac {1-2 x+x^2}{x^2}\right )\right ) \log \left (-1+\log \left (\frac {1-2 x+x^2}{x^2}\right )\right )}{x-x^2+\left (-x+x^2\right ) \log \left (\frac {1-2 x+x^2}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (141-24 x+x^2+x \left (12-13 x+x^2\right ) \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right ) \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )\right )}{(1-x) x \left (1-\log \left (\frac {(-1+x)^2}{x^2}\right )\right )} \, dx\\ &=2 \int \frac {141-24 x+x^2+x \left (12-13 x+x^2\right ) \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right ) \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )}{(1-x) x \left (1-\log \left (\frac {(-1+x)^2}{x^2}\right )\right )} \, dx\\ &=2 \int \left (\frac {141-24 x+x^2}{(-1+x) x \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )}+(-12+x) \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )\right ) \, dx\\ &=2 \int \frac {141-24 x+x^2}{(-1+x) x \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )} \, dx+2 \int (-12+x) \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right ) \, dx\\ &=2 \int \left (\frac {1}{-1+\log \left (\frac {(-1+x)^2}{x^2}\right )}+\frac {118}{(-1+x) \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )}-\frac {141}{x \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )}\right ) \, dx+2 \int \left (-12 \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )+x \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )\right ) \, dx\\ &=2 \int \frac {1}{-1+\log \left (\frac {(-1+x)^2}{x^2}\right )} \, dx+2 \int x \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right ) \, dx-24 \int \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right ) \, dx+236 \int \frac {1}{(-1+x) \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )} \, dx-282 \int \frac {1}{x \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.17, size = 43, normalized size = 2.05 \begin {gather*} 2 \left (\frac {141}{2} \log \left (1-\log \left (\frac {(-1+x)^2}{x^2}\right )\right )+\frac {1}{2} (-24+x) x \log \left (-1+\log \left (\frac {(-1+x)^2}{x^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 25, normalized size = 1.19 \begin {gather*} {\left (x^{2} - 24 \, x + 141\right )} \log \left (\log \left (\frac {x^{2} - 2 \, x + 1}{x^{2}}\right ) - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.69, size = 45, normalized size = 2.14 \begin {gather*} {\left (x^{2} - 24 \, x\right )} \log \left (\log \left (\frac {x^{2} - 2 \, x + 1}{x^{2}}\right ) - 1\right ) + 141 \, \log \left (\log \left (x^{2} - 2 \, x + 1\right ) - \log \left (x^{2}\right ) - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (2 x^{3}-26 x^{2}+24 x \right ) \ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right )-2 x^{3}+26 x^{2}-24 x \right ) \ln \left (\ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right )-1\right )+2 x^{2}-48 x +282}{\left (x^{2}-x \right ) \ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right )-x^{2}+x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 35, normalized size = 1.67 \begin {gather*} {\left (x^{2} - 24 \, x\right )} \log \left (2 \, \log \left (x - 1\right ) - 2 \, \log \relax (x) - 1\right ) + 141 \, \log \left (\log \left (x - 1\right ) - \log \relax (x) - \frac {1}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.01, size = 25, normalized size = 1.19 \begin {gather*} \ln \left (\ln \left (\frac {x^2-2\,x+1}{x^2}\right )-1\right )\,\left (x^2-24\,x+141\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.75, size = 46, normalized size = 2.19 \begin {gather*} \left (x^{2} - 24 x + \frac {23}{6}\right ) \log {\left (\log {\left (\frac {x^{2} - 2 x + 1}{x^{2}} \right )} - 1 \right )} + \frac {823 \log {\left (\log {\left (\frac {x^{2} - 2 x + 1}{x^{2}} \right )} - 1 \right )}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________