Optimal. Leaf size=27 \[ x+\frac {x}{2-x+x^2 \left (-2+e^x+x\right )}+\frac {x}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+4 x+7 x^2-8 x^3-2 x^4-e^{2 x} x^4+4 x^5-x^6+e^x \left (-4 x^2+2 x^3+4 x^4-2 x^5\right )+\left (4-4 x-7 x^2+8 x^3+2 x^4+e^{2 x} x^4-4 x^5+x^6+e^x \left (4 x^2-2 x^3-4 x^4+2 x^5\right )\right ) \log (x)+\left (6-4 x-5 x^2+6 x^3+2 x^4+e^{2 x} x^4-4 x^5+x^6+e^x \left (3 x^2-3 x^3-4 x^4+2 x^5\right )\right ) \log ^2(x)}{\left (4-4 x-7 x^2+8 x^3+2 x^4+e^{2 x} x^4-4 x^5+x^6+e^x \left (4 x^2-2 x^3-4 x^4+2 x^5\right )\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {6-4 x+\left (-5+3 e^x\right ) x^2-3 \left (-2+e^x\right ) x^3+\left (2-4 e^x+e^{2 x}\right ) x^4+2 \left (-2+e^x\right ) x^5+x^6}{\left (2-x+\left (-2+e^x\right ) x^2+x^3\right )^2}-\frac {1}{\log ^2(x)}+\frac {1}{\log (x)}\right ) \, dx\\ &=\int \frac {6-4 x+\left (-5+3 e^x\right ) x^2-3 \left (-2+e^x\right ) x^3+\left (2-4 e^x+e^{2 x}\right ) x^4+2 \left (-2+e^x\right ) x^5+x^6}{\left (2-x+\left (-2+e^x\right ) x^2+x^3\right )^2} \, dx-\int \frac {1}{\log ^2(x)} \, dx+\int \frac {1}{\log (x)} \, dx\\ &=\frac {x}{\log (x)}+\text {li}(x)+\int \left (1-\frac {1+x}{2-x-2 x^2+e^x x^2+x^3}+\frac {4+x-x^2-3 x^3+x^4}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2}\right ) \, dx-\int \frac {1}{\log (x)} \, dx\\ &=x+\frac {x}{\log (x)}-\int \frac {1+x}{2-x-2 x^2+e^x x^2+x^3} \, dx+\int \frac {4+x-x^2-3 x^3+x^4}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2} \, dx\\ &=x+\frac {x}{\log (x)}+\int \left (\frac {4}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2}+\frac {x}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2}-\frac {x^2}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2}-\frac {3 x^3}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2}+\frac {x^4}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2}\right ) \, dx-\int \left (\frac {1}{2-x-2 x^2+e^x x^2+x^3}+\frac {x}{2-x-2 x^2+e^x x^2+x^3}\right ) \, dx\\ &=x+\frac {x}{\log (x)}-3 \int \frac {x^3}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2} \, dx+4 \int \frac {1}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2} \, dx+\int \frac {x}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2} \, dx-\int \frac {x^2}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2} \, dx+\int \frac {x^4}{\left (2-x-2 x^2+e^x x^2+x^3\right )^2} \, dx-\int \frac {1}{2-x-2 x^2+e^x x^2+x^3} \, dx-\int \frac {x}{2-x-2 x^2+e^x x^2+x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 32, normalized size = 1.19 \begin {gather*} x+\frac {x}{2-x-2 x^2+e^x x^2+x^3}+\frac {x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.00, size = 75, normalized size = 2.78 \begin {gather*} \frac {x^{4} + x^{3} e^{x} - 2 \, x^{3} - x^{2} + {\left (x^{4} + x^{3} e^{x} - 2 \, x^{3} - x^{2} + 3 \, x\right )} \log \relax (x) + 2 \, x}{{\left (x^{3} + x^{2} e^{x} - 2 \, x^{2} - x + 2\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 90, normalized size = 3.33 \begin {gather*} \frac {x^{4} \log \relax (x) + x^{3} e^{x} \log \relax (x) + x^{4} + x^{3} e^{x} - 2 \, x^{3} \log \relax (x) - 2 \, x^{3} - x^{2} \log \relax (x) - x^{2} + 3 \, x \log \relax (x) + 2 \, x}{x^{3} \log \relax (x) + x^{2} e^{x} \log \relax (x) - 2 \, x^{2} \log \relax (x) - x \log \relax (x) + 2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 50, normalized size = 1.85
method | result | size |
risch | \(\frac {x \left (x^{3}+{\mathrm e}^{x} x^{2}-2 x^{2}-x +3\right )}{{\mathrm e}^{x} x^{2}+x^{3}-2 x^{2}-x +2}+\frac {x}{\ln \relax (x )}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 78, normalized size = 2.89 \begin {gather*} \frac {x^{4} - 2 \, x^{3} - x^{2} + {\left (x^{3} \log \relax (x) + x^{3}\right )} e^{x} + {\left (x^{4} - 2 \, x^{3} - x^{2} + 3 \, x\right )} \log \relax (x) + 2 \, x}{x^{2} e^{x} \log \relax (x) + {\left (x^{3} - 2 \, x^{2} - x + 2\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.82, size = 76, normalized size = 2.81 \begin {gather*} \frac {x\,\left (3\,\ln \relax (x)-x+x^2\,{\mathrm {e}}^x-2\,x^2\,\ln \relax (x)+x^3\,\ln \relax (x)-x\,\ln \relax (x)-2\,x^2+x^3+x^2\,{\mathrm {e}}^x\,\ln \relax (x)+2\right )}{\ln \relax (x)\,\left (x^2\,{\mathrm {e}}^x-x-2\,x^2+x^3+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 26, normalized size = 0.96 \begin {gather*} x + \frac {x}{\log {\relax (x )}} + \frac {x}{x^{3} + x^{2} e^{x} - 2 x^{2} - x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________