Optimal. Leaf size=24 \[ x+\frac {x}{-2+x+\frac {x^4 (-4+x+\log (x))}{(2+\log (5))^2}} \]
________________________________________________________________________________________
Rubi [F] time = 4.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {32-64 x+16 x^2+108 x^4-64 x^5+8 x^6+16 x^8-8 x^9+x^{10}+\left (64-128 x+32 x^2+108 x^4-64 x^5+8 x^6\right ) \log (5)+\left (48-96 x+24 x^2+27 x^4-16 x^5+2 x^6\right ) \log ^2(5)+\left (16-32 x+8 x^2\right ) \log ^3(5)+\left (2-4 x+x^2\right ) \log ^4(5)+\left (-28 x^4+8 x^5-8 x^8+2 x^9+\left (-28 x^4+8 x^5\right ) \log (5)+\left (-7 x^4+2 x^5\right ) \log ^2(5)\right ) \log (x)+x^8 \log ^2(x)}{64-64 x+16 x^2+64 x^4-48 x^5+8 x^6+16 x^8-8 x^9+x^{10}+\left (128-128 x+32 x^2+64 x^4-48 x^5+8 x^6\right ) \log (5)+\left (96-96 x+24 x^2+16 x^4-12 x^5+2 x^6\right ) \log ^2(5)+\left (32-32 x+8 x^2\right ) \log ^3(5)+\left (4-4 x+x^2\right ) \log ^4(5)+\left (-16 x^4+8 x^5-8 x^8+2 x^9+\left (-16 x^4+8 x^5\right ) \log (5)+\left (-4 x^4+2 x^5\right ) \log ^2(5)\right ) \log (x)+x^8 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 x^8-8 x^9+x^{10}+27 x^4 (2+\log (5))^2-16 x^5 (2+\log (5))^2+2 x^6 (2+\log (5))^2+2 (2+\log (5))^4-4 x (2+\log (5))^4+x^2 (2+\log (5))^4+x^4 \left (-8 x^4+2 x^5-7 (2+\log (5))^2+2 x (2+\log (5))^2\right ) \log (x)+x^8 \log ^2(x)}{\left (4 x^4-x^5+2 (2+\log (5))^2-x (2+\log (5))^2-x^4 \log (x)\right )^2} \, dx\\ &=\int \left (1+\frac {(2+\log (5))^2 \left (-x^4-x^5-32 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )+12 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )\right )}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2}+\frac {3 (2+\log (5))^2}{4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)}\right ) \, dx\\ &=x+(2+\log (5))^2 \int \frac {-x^4-x^5-32 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )+12 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2} \, dx+\left (3 (2+\log (5))^2\right ) \int \frac {1}{4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)} \, dx\\ &=x+(2+\log (5))^2 \int \frac {-x^4-x^5-8 (2+\log (5))^2+3 x (2+\log (5))^2}{\left (4 x^4-x^5+2 (2+\log (5))^2-x (2+\log (5))^2-x^4 \log (x)\right )^2} \, dx+\left (3 (2+\log (5))^2\right ) \int \frac {1}{4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)} \, dx\\ &=x+(2+\log (5))^2 \int \left (-\frac {x^4}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2}-\frac {x^5}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2}-\frac {8 (2+\log (5))^2}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2}+\frac {3 x (2+\log (5))^2}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2}\right ) \, dx+\left (3 (2+\log (5))^2\right ) \int \frac {1}{4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)} \, dx\\ &=x-(2+\log (5))^2 \int \frac {x^4}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2} \, dx-(2+\log (5))^2 \int \frac {x^5}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2} \, dx+\left (3 (2+\log (5))^2\right ) \int \frac {1}{4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)} \, dx+\left (3 (2+\log (5))^4\right ) \int \frac {x}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2} \, dx-\left (8 (2+\log (5))^4\right ) \int \frac {1}{\left (4 x^4-x^5+8 \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-4 x \left (1+\frac {1}{4} \log (5) (4+\log (5))\right )-x^4 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 43, normalized size = 1.79 \begin {gather*} x+\frac {x (2+\log (5))^2}{-4 x^4+x^5-2 (2+\log (5))^2+x (2+\log (5))^2+x^4 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.92, size = 83, normalized size = 3.46 \begin {gather*} \frac {x^{6} + x^{5} \log \relax (x) - 4 \, x^{5} + {\left (x^{2} - x\right )} \log \relax (5)^{2} + 4 \, x^{2} + 4 \, {\left (x^{2} - x\right )} \log \relax (5) - 4 \, x}{x^{5} + x^{4} \log \relax (x) - 4 \, x^{4} + {\left (x - 2\right )} \log \relax (5)^{2} + 4 \, {\left (x - 2\right )} \log \relax (5) + 4 \, x - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 60, normalized size = 2.50 \begin {gather*} x + \frac {x \log \relax (5)^{2} + 4 \, x \log \relax (5) + 4 \, x}{x^{5} + x^{4} \log \relax (x) - 4 \, x^{4} + x \log \relax (5)^{2} + 4 \, x \log \relax (5) - 2 \, \log \relax (5)^{2} + 4 \, x - 8 \, \log \relax (5) - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 57, normalized size = 2.38
method | result | size |
risch | \(x +\frac {\left (\ln \relax (5)^{2}+4 \ln \relax (5)+4\right ) x}{x^{4} \ln \relax (x )+x^{5}-4 x^{4}+x \ln \relax (5)^{2}-2 \ln \relax (5)^{2}+4 x \ln \relax (5)-8 \ln \relax (5)+4 x -8}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 83, normalized size = 3.46 \begin {gather*} \frac {x^{6} + x^{5} \log \relax (x) - 4 \, x^{5} + {\left (\log \relax (5)^{2} + 4 \, \log \relax (5) + 4\right )} x^{2} - {\left (\log \relax (5)^{2} + 4 \, \log \relax (5) + 4\right )} x}{x^{5} + x^{4} \log \relax (x) - 4 \, x^{4} + {\left (\log \relax (5)^{2} + 4 \, \log \relax (5) + 4\right )} x - 2 \, \log \relax (5)^{2} - 8 \, \log \relax (5) - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\ln \relax (5)}^4\,\left (x^2-4\,x+2\right )-\ln \relax (x)\,\left (\ln \relax (5)\,\left (28\,x^4-8\,x^5\right )+28\,x^4-8\,x^5+8\,x^8-2\,x^9+{\ln \relax (5)}^2\,\left (7\,x^4-2\,x^5\right )\right )-64\,x+{\ln \relax (5)}^2\,\left (2\,x^6-16\,x^5+27\,x^4+24\,x^2-96\,x+48\right )+x^8\,{\ln \relax (x)}^2+{\ln \relax (5)}^3\,\left (8\,x^2-32\,x+16\right )+16\,x^2+108\,x^4-64\,x^5+8\,x^6+16\,x^8-8\,x^9+x^{10}+\ln \relax (5)\,\left (8\,x^6-64\,x^5+108\,x^4+32\,x^2-128\,x+64\right )+32}{{\ln \relax (5)}^4\,\left (x^2-4\,x+4\right )-\ln \relax (x)\,\left (\ln \relax (5)\,\left (16\,x^4-8\,x^5\right )+16\,x^4-8\,x^5+8\,x^8-2\,x^9+{\ln \relax (5)}^2\,\left (4\,x^4-2\,x^5\right )\right )-64\,x+{\ln \relax (5)}^2\,\left (2\,x^6-12\,x^5+16\,x^4+24\,x^2-96\,x+96\right )+x^8\,{\ln \relax (x)}^2+{\ln \relax (5)}^3\,\left (8\,x^2-32\,x+32\right )+16\,x^2+64\,x^4-48\,x^5+8\,x^6+16\,x^8-8\,x^9+x^{10}+\ln \relax (5)\,\left (8\,x^6-48\,x^5+64\,x^4+32\,x^2-128\,x+128\right )+64} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.49, size = 63, normalized size = 2.62 \begin {gather*} x + \frac {x \log {\relax (5 )}^{2} + 4 x + 4 x \log {\relax (5 )}}{x^{5} + x^{4} \log {\relax (x )} - 4 x^{4} + x \log {\relax (5 )}^{2} + 4 x + 4 x \log {\relax (5 )} - 8 \log {\relax (5 )} - 8 - 2 \log {\relax (5 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________