Optimal. Leaf size=19 \[ e^{e^4-e^{e^x}+x-x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6706} \begin {gather*} e^{-x^2+x-e^{e^x}+e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{e^4-e^{e^x}+x-x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 19, normalized size = 1.00 \begin {gather*} e^{e^4-e^{e^x}+x-x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 27, normalized size = 1.42 \begin {gather*} e^{\left (-{\left ({\left (x^{2} - x - e^{4}\right )} e^{x} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 15, normalized size = 0.79 \begin {gather*} e^{\left (-x^{2} + x + e^{4} - e^{\left (e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.84
method | result | size |
derivativedivides | \({\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{4}-x^{2}+x}\) | \(16\) |
default | \({\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{4}-x^{2}+x}\) | \(16\) |
norman | \({\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{4}-x^{2}+x}\) | \(16\) |
risch | \({\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{4}-x^{2}+x}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 15, normalized size = 0.79 \begin {gather*} e^{\left (-x^{2} + x + e^{4} - e^{\left (e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 18, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{-{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{{\mathrm {e}}^4}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 14, normalized size = 0.74 \begin {gather*} e^{- x^{2} + x - e^{e^{x}} + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________