Optimal. Leaf size=23 \[ \frac {3}{\left (2+4 e^{5+x}\right ) (4-e-x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3+e^{5+x} (-18+6 e+6 x)}{32+2 e^2-16 x+2 x^2+e (-16+4 x)+e^{5+x} \left (128+8 e^2-64 x+8 x^2+e (-64+16 x)\right )+e^{10+2 x} \left (128+8 e^2-64 x+8 x^2+e (-64+16 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+6 e^{6+x}+6 e^{5+x} (-3+x)}{2 \left (1+2 e^{5+x}\right )^2 (4-e-x)^2} \, dx\\ &=\frac {1}{2} \int \frac {3+6 e^{6+x}+6 e^{5+x} (-3+x)}{\left (1+2 e^{5+x}\right )^2 (4-e-x)^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {3}{\left (1+2 e^{5+x}\right )^2 (-4+e+x)}+\frac {3 (-3+e+x)}{\left (1+2 e^{5+x}\right ) (-4+e+x)^2}\right ) \, dx\\ &=-\left (\frac {3}{2} \int \frac {1}{\left (1+2 e^{5+x}\right )^2 (-4+e+x)} \, dx\right )+\frac {3}{2} \int \frac {-3+e+x}{\left (1+2 e^{5+x}\right ) (-4+e+x)^2} \, dx\\ &=-\left (\frac {3}{2} \int \frac {1}{\left (1+2 e^{5+x}\right )^2 (-4+e+x)} \, dx\right )+\frac {3}{2} \int \left (\frac {1}{\left (1+2 e^{5+x}\right ) (-4+e+x)^2}+\frac {1}{\left (1+2 e^{5+x}\right ) (-4+e+x)}\right ) \, dx\\ &=\frac {3}{2} \int \frac {1}{\left (1+2 e^{5+x}\right ) (-4+e+x)^2} \, dx-\frac {3}{2} \int \frac {1}{\left (1+2 e^{5+x}\right )^2 (-4+e+x)} \, dx+\frac {3}{2} \int \frac {1}{\left (1+2 e^{5+x}\right ) (-4+e+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 21, normalized size = 0.91 \begin {gather*} -\frac {3}{2 \left (1+2 e^{5+x}\right ) (-4+e+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 20, normalized size = 0.87 \begin {gather*} -\frac {3}{2 \, {\left (2 \, {\left (x + e - 4\right )} e^{\left (x + 5\right )} + x + e - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 28, normalized size = 1.22 \begin {gather*} -\frac {3}{2 \, {\left (2 \, x e^{\left (x + 5\right )} + x + e + 2 \, e^{\left (x + 6\right )} - 8 \, e^{\left (x + 5\right )} - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 20, normalized size = 0.87
method | result | size |
norman | \(-\frac {3}{2 \left (2 \,{\mathrm e}^{5+x}+1\right ) \left (x +{\mathrm e}-4\right )}\) | \(20\) |
risch | \(-\frac {3}{2 \left (2 \,{\mathrm e}^{5+x}+1\right ) \left (x +{\mathrm e}-4\right )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 24, normalized size = 1.04 \begin {gather*} -\frac {3}{2 \, {\left (2 \, {\left (x e^{5} + e^{6} - 4 \, e^{5}\right )} e^{x} + x + e - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.56, size = 60, normalized size = 2.61 \begin {gather*} \frac {6\,{\mathrm {e}}^{x+5}+\frac {3\,x}{\mathrm {e}-4}+\frac {6\,x\,{\mathrm {e}}^{x+5}}{\mathrm {e}-4}}{2\,x-16\,{\mathrm {e}}^{x+5}+4\,{\mathrm {e}}^{x+6}+2\,\mathrm {e}+4\,x\,{\mathrm {e}}^{x+5}-8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 27, normalized size = 1.17 \begin {gather*} - \frac {3}{2 x + \left (4 x - 16 + 4 e\right ) e^{x + 5} - 8 + 2 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________