Optimal. Leaf size=23 \[ \left (-16+\frac {4+\frac {8 e^{-2 x}}{x^2}}{x+\log (x)}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 11.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-128-384 x-256 x^2+e^{2 x} \left (-128 x^2+640 x^4+512 x^5\right )+e^{4 x} \left (-32 x^4+96 x^5+128 x^6\right )+\left (-256-256 x+e^{2 x} \left (128 x^2+1152 x^3+1024 x^4\right )+e^{4 x} \left (128 x^4+128 x^5\right )\right ) \log (x)+e^{2 x} \left (512 x^2+512 x^3\right ) \log ^2(x)}{e^{4 x} x^8+3 e^{4 x} x^7 \log (x)+3 e^{4 x} x^6 \log ^2(x)+e^{4 x} x^5 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 e^{-4 x} (1+x) \left (-4-8 x-4 e^{2 x} x^2+4 e^{2 x} x^3-e^{2 x} \left (-16+e^{2 x}\right ) x^4+4 e^{4 x} x^5+4 \left (-2+e^{4 x} x^4+e^{2 x} x^2 (1+8 x)\right ) \log (x)+16 e^{2 x} x^2 \log ^2(x)\right )}{x^5 (x+\log (x))^3} \, dx\\ &=32 \int \frac {e^{-4 x} (1+x) \left (-4-8 x-4 e^{2 x} x^2+4 e^{2 x} x^3-e^{2 x} \left (-16+e^{2 x}\right ) x^4+4 e^{4 x} x^5+4 \left (-2+e^{4 x} x^4+e^{2 x} x^2 (1+8 x)\right ) \log (x)+16 e^{2 x} x^2 \log ^2(x)\right )}{x^5 (x+\log (x))^3} \, dx\\ &=32 \int \left (-\frac {4 e^{-4 x} (1+x)}{x^5 (x+\log (x))^3}-\frac {8 e^{-4 x} (1+x)}{x^4 (x+\log (x))^3}-\frac {8 e^{-4 x} (1+x) \log (x)}{x^5 (x+\log (x))^3}+\frac {(1+x) (-1+4 x+4 \log (x))}{x (x+\log (x))^3}+\frac {4 e^{-2 x} (1+x) \left (-1+x+4 x^2+\log (x)+8 x \log (x)+4 \log ^2(x)\right )}{x^3 (x+\log (x))^3}\right ) \, dx\\ &=32 \int \frac {(1+x) (-1+4 x+4 \log (x))}{x (x+\log (x))^3} \, dx-128 \int \frac {e^{-4 x} (1+x)}{x^5 (x+\log (x))^3} \, dx+128 \int \frac {e^{-2 x} (1+x) \left (-1+x+4 x^2+\log (x)+8 x \log (x)+4 \log ^2(x)\right )}{x^3 (x+\log (x))^3} \, dx-256 \int \frac {e^{-4 x} (1+x)}{x^4 (x+\log (x))^3} \, dx-256 \int \frac {e^{-4 x} (1+x) \log (x)}{x^5 (x+\log (x))^3} \, dx\\ &=32 \int \left (\frac {-1-x}{x (x+\log (x))^3}+\frac {4 (1+x)}{x (x+\log (x))^2}\right ) \, dx-128 \int \left (\frac {e^{-4 x}}{x^5 (x+\log (x))^3}+\frac {e^{-4 x}}{x^4 (x+\log (x))^3}\right ) \, dx+128 \int \left (\frac {e^{-2 x} (-1-x)}{x^3 (x+\log (x))^3}+\frac {e^{-2 x} (1+x)}{x^3 (x+\log (x))^2}+\frac {4 e^{-2 x} (1+x)}{x^3 (x+\log (x))}\right ) \, dx-256 \int \left (\frac {e^{-4 x}}{x^4 (x+\log (x))^3}+\frac {e^{-4 x}}{x^3 (x+\log (x))^3}\right ) \, dx-256 \int \left (\frac {e^{-4 x} (-1-x)}{x^4 (x+\log (x))^3}+\frac {e^{-4 x} (1+x)}{x^5 (x+\log (x))^2}\right ) \, dx\\ &=32 \int \frac {-1-x}{x (x+\log (x))^3} \, dx-128 \int \frac {e^{-4 x}}{x^5 (x+\log (x))^3} \, dx-128 \int \frac {e^{-4 x}}{x^4 (x+\log (x))^3} \, dx+128 \int \frac {e^{-2 x} (-1-x)}{x^3 (x+\log (x))^3} \, dx+128 \int \frac {e^{-2 x} (1+x)}{x^3 (x+\log (x))^2} \, dx+128 \int \frac {1+x}{x (x+\log (x))^2} \, dx-256 \int \frac {e^{-4 x}}{x^4 (x+\log (x))^3} \, dx-256 \int \frac {e^{-4 x} (-1-x)}{x^4 (x+\log (x))^3} \, dx-256 \int \frac {e^{-4 x}}{x^3 (x+\log (x))^3} \, dx-256 \int \frac {e^{-4 x} (1+x)}{x^5 (x+\log (x))^2} \, dx+512 \int \frac {e^{-2 x} (1+x)}{x^3 (x+\log (x))} \, dx\\ &=\frac {16}{(x+\log (x))^2}-\frac {128}{x+\log (x)}-128 \int \frac {e^{-4 x}}{x^5 (x+\log (x))^3} \, dx-128 \int \frac {e^{-4 x}}{x^4 (x+\log (x))^3} \, dx+128 \int \left (-\frac {e^{-2 x}}{x^3 (x+\log (x))^3}-\frac {e^{-2 x}}{x^2 (x+\log (x))^3}\right ) \, dx+128 \int \left (\frac {e^{-2 x}}{x^3 (x+\log (x))^2}+\frac {e^{-2 x}}{x^2 (x+\log (x))^2}\right ) \, dx-256 \int \frac {e^{-4 x}}{x^4 (x+\log (x))^3} \, dx-256 \int \frac {e^{-4 x}}{x^3 (x+\log (x))^3} \, dx-256 \int \left (-\frac {e^{-4 x}}{x^4 (x+\log (x))^3}-\frac {e^{-4 x}}{x^3 (x+\log (x))^3}\right ) \, dx-256 \int \left (\frac {e^{-4 x}}{x^5 (x+\log (x))^2}+\frac {e^{-4 x}}{x^4 (x+\log (x))^2}\right ) \, dx+512 \int \left (\frac {e^{-2 x}}{x^3 (x+\log (x))}+\frac {e^{-2 x}}{x^2 (x+\log (x))}\right ) \, dx\\ &=\frac {16}{(x+\log (x))^2}-\frac {128}{x+\log (x)}-128 \int \frac {e^{-4 x}}{x^5 (x+\log (x))^3} \, dx-128 \int \frac {e^{-4 x}}{x^4 (x+\log (x))^3} \, dx-128 \int \frac {e^{-2 x}}{x^3 (x+\log (x))^3} \, dx-128 \int \frac {e^{-2 x}}{x^2 (x+\log (x))^3} \, dx+128 \int \frac {e^{-2 x}}{x^3 (x+\log (x))^2} \, dx+128 \int \frac {e^{-2 x}}{x^2 (x+\log (x))^2} \, dx-256 \int \frac {e^{-4 x}}{x^5 (x+\log (x))^2} \, dx-256 \int \frac {e^{-4 x}}{x^4 (x+\log (x))^2} \, dx+512 \int \frac {e^{-2 x}}{x^3 (x+\log (x))} \, dx+512 \int \frac {e^{-2 x}}{x^2 (x+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 42, normalized size = 1.83 \begin {gather*} \frac {16 \left (2 e^{-2 x}+x^2\right ) \left (2 e^{-2 x}+x^2-8 x^2 (x+\log (x))\right )}{x^4 (x+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.78, size = 93, normalized size = 4.04 \begin {gather*} -\frac {16 \, {\left ({\left (8 \, x^{5} - x^{4}\right )} e^{\left (4 \, x\right )} + 4 \, {\left (4 \, x^{3} - x^{2}\right )} e^{\left (2 \, x\right )} + 8 \, {\left (x^{4} e^{\left (4 \, x\right )} + 2 \, x^{2} e^{\left (2 \, x\right )}\right )} \log \relax (x) - 4\right )}}{x^{6} e^{\left (4 \, x\right )} + 2 \, x^{5} e^{\left (4 \, x\right )} \log \relax (x) + x^{4} e^{\left (4 \, x\right )} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.68, size = 76, normalized size = 3.30 \begin {gather*} -\frac {16 \, {\left (8 \, x^{5} + 8 \, x^{4} \log \relax (x) - x^{4} + 16 \, x^{3} e^{\left (-2 \, x\right )} + 16 \, x^{2} e^{\left (-2 \, x\right )} \log \relax (x) - 4 \, x^{2} e^{\left (-2 \, x\right )} - 4 \, e^{\left (-4 \, x\right )}\right )}}{x^{6} + 2 \, x^{5} \log \relax (x) + x^{4} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 76, normalized size = 3.30
method | result | size |
risch | \(-\frac {16 \left (8 \,{\mathrm e}^{4 x} x^{5}+8 \ln \relax (x ) {\mathrm e}^{4 x} x^{4}-{\mathrm e}^{4 x} x^{4}+16 \,{\mathrm e}^{2 x} x^{3}+16 \ln \relax (x ) {\mathrm e}^{2 x} x^{2}-4 \,{\mathrm e}^{2 x} x^{2}-4\right ) {\mathrm e}^{-4 x}}{x^{4} \left (x +\ln \relax (x )\right )^{2}}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 71, normalized size = 3.09 \begin {gather*} -\frac {16 \, {\left (8 \, x^{5} + 8 \, x^{4} \log \relax (x) - x^{4} + 4 \, {\left (4 \, x^{3} + 4 \, x^{2} \log \relax (x) - x^{2}\right )} e^{\left (-2 \, x\right )} - 4 \, e^{\left (-4 \, x\right )}\right )}}{x^{6} + 2 \, x^{5} \log \relax (x) + x^{4} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {384\,x+\ln \relax (x)\,\left (256\,x-{\mathrm {e}}^{4\,x}\,\left (128\,x^5+128\,x^4\right )-{\mathrm {e}}^{2\,x}\,\left (1024\,x^4+1152\,x^3+128\,x^2\right )+256\right )-{\mathrm {e}}^{4\,x}\,\left (128\,x^6+96\,x^5-32\,x^4\right )-{\mathrm {e}}^{2\,x}\,\left (512\,x^5+640\,x^4-128\,x^2\right )+256\,x^2-{\mathrm {e}}^{2\,x}\,{\ln \relax (x)}^2\,\left (512\,x^3+512\,x^2\right )+128}{x^8\,{\mathrm {e}}^{4\,x}+3\,x^7\,{\mathrm {e}}^{4\,x}\,\ln \relax (x)+x^5\,{\mathrm {e}}^{4\,x}\,{\ln \relax (x)}^3+3\,x^6\,{\mathrm {e}}^{4\,x}\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 156, normalized size = 6.78 \begin {gather*} \frac {\left (64 x^{4} + 128 x^{3} \log {\relax (x )} + 64 x^{2} \log {\relax (x )}^{2}\right ) e^{- 4 x} + \left (- 256 x^{7} - 768 x^{6} \log {\relax (x )} + 64 x^{6} - 768 x^{5} \log {\relax (x )}^{2} + 128 x^{5} \log {\relax (x )} - 256 x^{4} \log {\relax (x )}^{3} + 64 x^{4} \log {\relax (x )}^{2}\right ) e^{- 2 x}}{x^{10} + 4 x^{9} \log {\relax (x )} + 6 x^{8} \log {\relax (x )}^{2} + 4 x^{7} \log {\relax (x )}^{3} + x^{6} \log {\relax (x )}^{4}} + \frac {- 128 x - 128 \log {\relax (x )} + 16}{x^{2} + 2 x \log {\relax (x )} + \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________