Optimal. Leaf size=30 \[ e^{-4+x-\left (x+x \left (-\frac {e^x}{x}+\log (2)\right ) \log (5)\right )^2} (-1+x) \]
________________________________________________________________________________________
Rubi [F] time = 15.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (-4+x-x^2-2 x^2 \log (2) \log (5)-e^{2 x} \log ^2(5)-x^2 \log ^2(2) \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )\right ) \left (3 x-2 x^2+\left (4 x-4 x^2\right ) \log (2) \log (5)+e^{2 x} (2-2 x) \log ^2(5)+\left (2 x-2 x^2\right ) \log ^2(2) \log ^2(5)+e^x \left (\left (-2+2 x^2\right ) \log (5)+\left (-2+2 x^2\right ) \log (2) \log ^2(5)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) \left (3 x-2 x^2+e^{2 x} (2-2 x) \log ^2(5)+\left (4 x-4 x^2\right ) \log (2) \log (5) \left (1+\frac {1}{2} \log (2) \log (5)\right )+e^x \left (\left (-2+2 x^2\right ) \log (5)+\left (-2+2 x^2\right ) \log (2) \log ^2(5)\right )\right ) \, dx\\ &=\int \left (3 \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x-2 \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x^2-2 \exp \left (-4+3 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) (-1+x) \log ^2(5)+2 \exp \left (-4+2 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) \left (-1+x^2\right ) \log (5) (1+\log (2) \log (5))-2 \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) (-1+x) x \log (2) \log (5) (2+\log (2) \log (5))\right ) \, dx\\ &=-\left (2 \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x^2 \, dx\right )+3 \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x \, dx-\left (2 \log ^2(5)\right ) \int \exp \left (-4+3 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) (-1+x) \, dx+(2 \log (5) (1+\log (2) \log (5))) \int \exp \left (-4+2 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) \left (-1+x^2\right ) \, dx-(2 \log (2) \log (5) (2+\log (2) \log (5))) \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) (-1+x) x \, dx\\ &=-\left (2 \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x^2 \, dx\right )+3 \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x \, dx-\left (2 \log ^2(5)\right ) \int \left (-\exp \left (-4+3 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right )+\exp \left (-4+3 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x\right ) \, dx+(2 \log (5) (1+\log (2) \log (5))) \int \left (-\exp \left (-4+2 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right )+\exp \left (-4+2 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x^2\right ) \, dx-(2 \log (2) \log (5) (2+\log (2) \log (5))) \int \left (-\exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x+\exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x^2\right ) \, dx\\ &=-\left (2 \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x^2 \, dx\right )+3 \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x \, dx+\left (2 \log ^2(5)\right ) \int \exp \left (-4+3 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) \, dx-\left (2 \log ^2(5)\right ) \int \exp \left (-4+3 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x \, dx-(2 \log (5) (1+\log (2) \log (5))) \int \exp \left (-4+2 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) \, dx+(2 \log (5) (1+\log (2) \log (5))) \int \exp \left (-4+2 x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x^2 \, dx+(2 \log (2) \log (5) (2+\log (2) \log (5))) \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x \, dx-(2 \log (2) \log (5) (2+\log (2) \log (5))) \int \exp \left (-4+x-e^{2 x} \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )-x^2 (1+\log (2) \log (5) (2+\log (2) \log (5)))\right ) x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 15.04, size = 0, normalized size = 0.00 \begin {gather*} \int e^{-4+x-x^2-2 x^2 \log (2) \log (5)-e^{2 x} \log ^2(5)-x^2 \log ^2(2) \log ^2(5)+e^x \left (2 x \log (5)+2 x \log (2) \log ^2(5)\right )} \left (3 x-2 x^2+\left (4 x-4 x^2\right ) \log (2) \log (5)+e^{2 x} (2-2 x) \log ^2(5)+\left (2 x-2 x^2\right ) \log ^2(2) \log ^2(5)+e^x \left (\left (-2+2 x^2\right ) \log (5)+\left (-2+2 x^2\right ) \log (2) \log ^2(5)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 62, normalized size = 2.07 \begin {gather*} {\left (x - 1\right )} e^{\left (-x^{2} \log \relax (5)^{2} \log \relax (2)^{2} - 2 \, x^{2} \log \relax (5) \log \relax (2) - e^{\left (2 \, x\right )} \log \relax (5)^{2} - x^{2} + 2 \, {\left (x \log \relax (5)^{2} \log \relax (2) + x \log \relax (5)\right )} e^{x} + x - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.57, size = 124, normalized size = 4.13 \begin {gather*} {\left (x e^{\left (-x^{2} \log \relax (5)^{2} \log \relax (2)^{2} + 2 \, x e^{x} \log \relax (5)^{2} \log \relax (2) - 2 \, x^{2} \log \relax (5) \log \relax (2) + 2 \, x e^{x} \log \relax (5) - e^{\left (2 \, x\right )} \log \relax (5)^{2} - x^{2} + x\right )} - e^{\left (-x^{2} \log \relax (5)^{2} \log \relax (2)^{2} + 2 \, x e^{x} \log \relax (5)^{2} \log \relax (2) - 2 \, x^{2} \log \relax (5) \log \relax (2) + 2 \, x e^{x} \log \relax (5) - e^{\left (2 \, x\right )} \log \relax (5)^{2} - x^{2} + x\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.19, size = 61, normalized size = 2.03
method | result | size |
risch | \(\left (x -1\right ) \left (\frac {1}{4}\right )^{x^{2} \ln \relax (5)} 4^{x \ln \relax (5)^{2} {\mathrm e}^{x}} 25^{{\mathrm e}^{x} x} {\mathrm e}^{-x^{2} \ln \relax (2)^{2} \ln \relax (5)^{2}-4-\ln \relax (5)^{2} {\mathrm e}^{2 x}-x^{2}+x}\) | \(61\) |
norman | \(x \,{\mathrm e}^{-\ln \relax (5)^{2} {\mathrm e}^{2 x}+\left (2 x \ln \relax (2) \ln \relax (5)^{2}+2 x \ln \relax (5)\right ) {\mathrm e}^{x}-x^{2} \ln \relax (2)^{2} \ln \relax (5)^{2}-2 x^{2} \ln \relax (2) \ln \relax (5)-x^{2}+x -4}-{\mathrm e}^{-\ln \relax (5)^{2} {\mathrm e}^{2 x}+\left (2 x \ln \relax (2) \ln \relax (5)^{2}+2 x \ln \relax (5)\right ) {\mathrm e}^{x}-x^{2} \ln \relax (2)^{2} \ln \relax (5)^{2}-2 x^{2} \ln \relax (2) \ln \relax (5)-x^{2}+x -4}\) | \(124\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 63, normalized size = 2.10 \begin {gather*} {\left (x - 1\right )} e^{\left (-x^{2} \log \relax (5)^{2} \log \relax (2)^{2} + 2 \, x e^{x} \log \relax (5)^{2} \log \relax (2) - 2 \, x^{2} \log \relax (5) \log \relax (2) + 2 \, x e^{x} \log \relax (5) - e^{\left (2 \, x\right )} \log \relax (5)^{2} - x^{2} + x - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.03, size = 65, normalized size = 2.17 \begin {gather*} \frac {2^{2\,x\,{\mathrm {e}}^x\,{\ln \relax (5)}^2}\,5^{2\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{x-{\mathrm {e}}^{2\,x}\,{\ln \relax (5)}^2-x^2-x^2\,{\ln \relax (2)}^2\,{\ln \relax (5)}^2-4}\,\left (x-1\right )}{2^{2\,x^2\,\ln \relax (5)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.44, size = 68, normalized size = 2.27 \begin {gather*} \left (x - 1\right ) e^{- 2 x^{2} \log {\relax (2 )} \log {\relax (5 )} - x^{2} \log {\relax (2 )}^{2} \log {\relax (5 )}^{2} - x^{2} + x + \left (2 x \log {\relax (5 )} + 2 x \log {\relax (2 )} \log {\relax (5 )}^{2}\right ) e^{x} - e^{2 x} \log {\relax (5 )}^{2} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________