Optimal. Leaf size=18 \[ \frac {2}{5} e^2 x (-x+3 (-3+\log (3))) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 25, normalized size of antiderivative = 1.39, number of steps used = 2, number of rules used = 1, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12} \begin {gather*} \frac {6}{5} e^2 x \log (3)-\frac {1}{10} e^2 (2 x+9)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (e^2 (-18-4 x)+6 e^2 \log (3)\right ) \, dx\\ &=-\frac {1}{10} e^2 (9+2 x)^2+\frac {6}{5} e^2 x \log (3)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 19, normalized size = 1.06 \begin {gather*} -\frac {2}{5} e^2 \left (9 x+x^2-3 x \log (3)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 19, normalized size = 1.06 \begin {gather*} \frac {6}{5} \, x e^{2} \log \relax (3) - \frac {2}{5} \, {\left (x^{2} + 9 \, x\right )} e^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 19, normalized size = 1.06 \begin {gather*} \frac {6}{5} \, x e^{2} \log \relax (3) - \frac {2}{5} \, {\left (x^{2} + 9 \, x\right )} e^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.83
method | result | size |
gosper | \(\frac {2 x \,{\mathrm e}^{2} \left (3 \ln \relax (3)-9-x \right )}{5}\) | \(15\) |
risch | \(\frac {6 x \,{\mathrm e}^{2} \ln \relax (3)}{5}-\frac {2 x^{2} {\mathrm e}^{2}}{5}-\frac {18 \,{\mathrm e}^{2} x}{5}\) | \(21\) |
default | \(\frac {6 x \,{\mathrm e}^{2} \ln \relax (3)}{5}+\frac {{\mathrm e}^{2} \left (-2 x^{2}-18 x \right )}{5}\) | \(22\) |
norman | \(\left (\frac {6 \,{\mathrm e}^{2} \ln \relax (3)}{5}-\frac {18 \,{\mathrm e}^{2}}{5}\right ) x -\frac {2 x^{2} {\mathrm e}^{2}}{5}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 19, normalized size = 1.06 \begin {gather*} \frac {6}{5} \, x e^{2} \log \relax (3) - \frac {2}{5} \, {\left (x^{2} + 9 \, x\right )} e^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 18, normalized size = 1.00 \begin {gather*} -\frac {{\mathrm {e}}^2\,\left (4\,x+18\right )\,\left (4\,x-12\,\ln \relax (3)+18\right )}{40} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 27, normalized size = 1.50 \begin {gather*} - \frac {2 x^{2} e^{2}}{5} + x \left (- \frac {18 e^{2}}{5} + \frac {6 e^{2} \log {\relax (3 )}}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________