Optimal. Leaf size=29 \[ \log \left (1+\frac {e^6 (-3-2 x)^2}{x^2 \left (x-\frac {5+x}{x}\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 50, normalized size of antiderivative = 1.72, number of steps used = 5, number of rules used = 4, integrand size = 73, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {12, 2074, 628, 1587} \begin {gather*} \log \left (x^4-2 x^3-\left (9-4 e^6\right ) x^2+2 \left (5+6 e^6\right ) x+9 e^6+25\right )-2 \log \left (-x^2+x+5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 628
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^6 \int \frac {-42-64 x-36 x^2-8 x^3}{-125-75 x+60 x^2+29 x^3-12 x^4-3 x^5+x^6+e^6 \left (-45-69 x-23 x^2+8 x^3+4 x^4\right )} \, dx\\ &=e^6 \int \left (-\frac {2 (-1+2 x)}{e^6 \left (-5-x+x^2\right )}+\frac {2 \left (5+6 e^6-\left (9-4 e^6\right ) x-3 x^2+2 x^3\right )}{e^6 \left (25+9 e^6+2 \left (5+6 e^6\right ) x-\left (9-4 e^6\right ) x^2-2 x^3+x^4\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-1+2 x}{-5-x+x^2} \, dx\right )+2 \int \frac {5+6 e^6-\left (9-4 e^6\right ) x-3 x^2+2 x^3}{25+9 e^6+2 \left (5+6 e^6\right ) x-\left (9-4 e^6\right ) x^2-2 x^3+x^4} \, dx\\ &=-2 \log \left (5+x-x^2\right )+\log \left (25+9 e^6+2 \left (5+6 e^6\right ) x-\left (9-4 e^6\right ) x^2-2 x^3+x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 83, normalized size = 2.86 \begin {gather*} -2 e^6 \left (\frac {\log \left (5+8 (3+2 x)-(3+2 x)^2\right )}{e^6}-\frac {\log \left (25+80 (3+2 x)+54 (3+2 x)^2+16 e^6 (3+2 x)^2-16 (3+2 x)^3+(3+2 x)^4\right )}{2 e^6}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 44, normalized size = 1.52 \begin {gather*} \log \left (x^{4} - 2 \, x^{3} - 9 \, x^{2} + {\left (4 \, x^{2} + 12 \, x + 9\right )} e^{6} + 10 \, x + 25\right ) - 2 \, \log \left (x^{2} - x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 56, normalized size = 1.93 \begin {gather*} {\left (e^{\left (-6\right )} \log \left (x^{4} - 2 \, x^{3} + 4 \, x^{2} e^{6} - 9 \, x^{2} + 12 \, x e^{6} + 10 \, x + 9 \, e^{6} + 25\right ) - 2 \, e^{\left (-6\right )} \log \left ({\left | x^{2} - x - 5 \right |}\right )\right )} e^{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 48, normalized size = 1.66
method | result | size |
risch | \(-2 \ln \left (x^{2}-x -5\right )+\ln \left (-x^{4}+2 x^{3}+\left (-4 \,{\mathrm e}^{6}+9\right ) x^{2}+\left (-12 \,{\mathrm e}^{6}-10\right ) x -9 \,{\mathrm e}^{6}-25\right )\) | \(48\) |
norman | \(-2 \ln \left (x^{2}-x -5\right )+\ln \left (x^{4}+4 x^{2} {\mathrm e}^{6}-2 x^{3}+12 x \,{\mathrm e}^{6}-9 x^{2}+9 \,{\mathrm e}^{6}+10 x +25\right )\) | \(54\) |
default | \(2 \,{\mathrm e}^{6} \left (\frac {{\mathrm e}^{-6} \ln \left (x^{4}+4 x^{2} {\mathrm e}^{6}-2 x^{3}+12 x \,{\mathrm e}^{6}-9 x^{2}+9 \,{\mathrm e}^{6}+10 x +25\right )}{2}-{\mathrm e}^{-6} \ln \left (x^{2}-x -5\right )\right )\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 54, normalized size = 1.86 \begin {gather*} {\left (e^{\left (-6\right )} \log \left (x^{4} - 2 \, x^{3} + x^{2} {\left (4 \, e^{6} - 9\right )} + 2 \, x {\left (6 \, e^{6} + 5\right )} + 9 \, e^{6} + 25\right ) - 2 \, e^{\left (-6\right )} \log \left (x^{2} - x - 5\right )\right )} e^{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.39, size = 47, normalized size = 1.62 \begin {gather*} \ln \left (10\,x+9\,{\mathrm {e}}^6+12\,x\,{\mathrm {e}}^6+4\,x^2\,{\mathrm {e}}^6-9\,x^2-2\,x^3+x^4+25\right )-2\,\ln \left (x^2-x-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.58, size = 44, normalized size = 1.52 \begin {gather*} - 2 \log {\left (x^{2} - x - 5 \right )} + \log {\left (x^{4} - 2 x^{3} + x^{2} \left (-9 + 4 e^{6}\right ) + x \left (10 + 12 e^{6}\right ) + 25 + 9 e^{6} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________