Optimal. Leaf size=22 \[ \left (-x+\frac {x}{\log \left (e^{x^2}+2 x+\log (8)\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 6.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^2-4 e^{x^2} x^3+\left (8 x^2+e^{x^2} \left (2 x+4 x^3\right )+2 x \log (8)\right ) \log \left (e^{x^2}+2 x+\log (8)\right )+\left (-4 e^{x^2} x-8 x^2-4 x \log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )+\left (2 e^{x^2} x+4 x^2+2 x \log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (1-\log \left (e^{x^2}+2 x+\log (8)\right )\right ) \left (-2 x \left (1+e^{x^2} x\right )+\left (e^{x^2}+2 x+\log (8)\right ) \log \left (e^{x^2}+2 x+\log (8)\right )-\left (e^{x^2}+2 x+\log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx\\ &=2 \int \frac {x \left (1-\log \left (e^{x^2}+2 x+\log (8)\right )\right ) \left (-2 x \left (1+e^{x^2} x\right )+\left (e^{x^2}+2 x+\log (8)\right ) \log \left (e^{x^2}+2 x+\log (8)\right )-\left (e^{x^2}+2 x+\log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx\\ &=2 \int \left (-\frac {2 x^2 \left (-1+2 x^2+x \log (8)\right ) \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )}+\frac {x \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right ) \left (2 x^2-\log \left (e^{x^2}+2 x+\log (8)\right )+\log ^2\left (e^{x^2}+2 x+\log (8)\right )\right )}{\log ^3\left (e^{x^2}+2 x+\log (8)\right )}\right ) \, dx\\ &=2 \int \frac {x \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right ) \left (2 x^2-\log \left (e^{x^2}+2 x+\log (8)\right )+\log ^2\left (e^{x^2}+2 x+\log (8)\right )\right )}{\log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx-4 \int \frac {x^2 \left (-1+2 x^2+x \log (8)\right ) \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx\\ &=2 \int \left (x-\frac {2 x^3}{\log ^3\left (e^{x^2}+2 x+\log (8)\right )}+\frac {x \left (1+2 x^2\right )}{\log ^2\left (e^{x^2}+2 x+\log (8)\right )}-\frac {2 x}{\log \left (e^{x^2}+2 x+\log (8)\right )}\right ) \, dx-4 \int \left (-\frac {x^2 \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )}+\frac {2 x^4 \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )}+\frac {x^3 \log (8) \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )}\right ) \, dx\\ &=x^2+2 \int \frac {x \left (1+2 x^2\right )}{\log ^2\left (e^{x^2}+2 x+\log (8)\right )} \, dx-4 \int \frac {x^3}{\log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx+4 \int \frac {x^2 \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx-4 \int \frac {x}{\log \left (e^{x^2}+2 x+\log (8)\right )} \, dx-8 \int \frac {x^4 \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx-(4 \log (8)) \int \frac {x^3 \left (-1+\log \left (e^{x^2}+2 x+\log (8)\right )\right )}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx\\ &=x^2+2 \int \left (\frac {x}{\log ^2\left (e^{x^2}+2 x+\log (8)\right )}+\frac {2 x^3}{\log ^2\left (e^{x^2}+2 x+\log (8)\right )}\right ) \, dx+4 \int \left (-\frac {x^2}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )}+\frac {x^2}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )}\right ) \, dx-4 \int \frac {x^3}{\log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx-4 \int \frac {x}{\log \left (e^{x^2}+2 x+\log (8)\right )} \, dx-8 \int \left (-\frac {x^4}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )}+\frac {x^4}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )}\right ) \, dx-(4 \log (8)) \int \left (-\frac {x^3}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )}+\frac {x^3}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )}\right ) \, dx\\ &=x^2+2 \int \frac {x}{\log ^2\left (e^{x^2}+2 x+\log (8)\right )} \, dx-4 \int \frac {x^3}{\log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx-4 \int \frac {x^2}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx+4 \int \frac {x^3}{\log ^2\left (e^{x^2}+2 x+\log (8)\right )} \, dx+4 \int \frac {x^2}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )} \, dx-4 \int \frac {x}{\log \left (e^{x^2}+2 x+\log (8)\right )} \, dx+8 \int \frac {x^4}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx-8 \int \frac {x^4}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )} \, dx+(4 \log (8)) \int \frac {x^3}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^3\left (e^{x^2}+2 x+\log (8)\right )} \, dx-(4 \log (8)) \int \frac {x^3}{\left (e^{x^2}+2 x+\log (8)\right ) \log ^2\left (e^{x^2}+2 x+\log (8)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 50, normalized size = 2.27 \begin {gather*} 2 \left (\frac {x^2}{2}+\frac {x^2}{2 \log ^2\left (e^{x^2}+2 x+\log (8)\right )}-\frac {x^2}{\log \left (e^{x^2}+2 x+\log (8)\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.52, size = 57, normalized size = 2.59 \begin {gather*} \frac {x^{2} \log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right )^{2} - 2 \, x^{2} \log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right ) + x^{2}}{\log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.91, size = 57, normalized size = 2.59 \begin {gather*} \frac {x^{2} \log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right )^{2} - 2 \, x^{2} \log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right ) + x^{2}}{\log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 42, normalized size = 1.91
method | result | size |
risch | \(x^{2}-\frac {\left (2 \ln \left ({\mathrm e}^{x^{2}}+3 \ln \relax (2)+2 x \right )-1\right ) x^{2}}{\ln \left ({\mathrm e}^{x^{2}}+3 \ln \relax (2)+2 x \right )^{2}}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 57, normalized size = 2.59 \begin {gather*} \frac {x^{2} \log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right )^{2} - 2 \, x^{2} \log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right ) + x^{2}}{\log \left (2 \, x + e^{\left (x^{2}\right )} + 3 \, \log \relax (2)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {{\ln \left (2\,x+{\mathrm {e}}^{x^2}+3\,\ln \relax (2)\right )}^2\,\left (4\,x\,{\mathrm {e}}^{x^2}+12\,x\,\ln \relax (2)+8\,x^2\right )-{\ln \left (2\,x+{\mathrm {e}}^{x^2}+3\,\ln \relax (2)\right )}^3\,\left (2\,x\,{\mathrm {e}}^{x^2}+6\,x\,\ln \relax (2)+4\,x^2\right )+4\,x^3\,{\mathrm {e}}^{x^2}+4\,x^2-\ln \left (2\,x+{\mathrm {e}}^{x^2}+3\,\ln \relax (2)\right )\,\left ({\mathrm {e}}^{x^2}\,\left (4\,x^3+2\,x\right )+6\,x\,\ln \relax (2)+8\,x^2\right )}{{\ln \left (2\,x+{\mathrm {e}}^{x^2}+3\,\ln \relax (2)\right )}^3\,\left (2\,x+{\mathrm {e}}^{x^2}+3\,\ln \relax (2)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 42, normalized size = 1.91 \begin {gather*} x^{2} + \frac {- 2 x^{2} \log {\left (2 x + e^{x^{2}} + 3 \log {\relax (2 )} \right )} + x^{2}}{\log {\left (2 x + e^{x^{2}} + 3 \log {\relax (2 )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________