Optimal. Leaf size=28 \[ e^{\frac {2 x^2}{\left (1-4 x^2\right )^2}} x^2-\frac {\log (4)}{e} \]
________________________________________________________________________________________
Rubi [F] time = 0.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 x^2}{1-8 x^2+16 x^4}} \left (-2 x+20 x^3-112 x^5+128 x^7\right )}{-1+12 x^2-48 x^4+64 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {2 x^2}{1-8 x^2+16 x^4}} x \left (1-10 x^2+56 x^4-64 x^6\right )}{\left (1-4 x^2\right )^3} \, dx\\ &=2 \int \frac {e^{\frac {2 x^2}{1-8 x^2+16 x^4}} x \left (1-10 x^2+56 x^4-64 x^6\right )}{\left (1-4 x^2\right )^3} \, dx\\ &=\operatorname {Subst}\left (\int \frac {e^{\frac {2 x}{1-8 x+16 x^2}} \left (1-10 x+56 x^2-64 x^3\right )}{(1-4 x)^3} \, dx,x,x^2\right )\\ &=\operatorname {Subst}\left (\int \frac {e^{\frac {2 x}{(1-4 x)^2}} \left (1-10 x+56 x^2-64 x^3\right )}{(1-4 x)^3} \, dx,x,x^2\right )\\ &=\operatorname {Subst}\left (\int \left (e^{\frac {2 x}{(1-4 x)^2}}-\frac {e^{\frac {2 x}{(1-4 x)^2}}}{(-1+4 x)^3}-\frac {3 e^{\frac {2 x}{(1-4 x)^2}}}{2 (-1+4 x)^2}-\frac {e^{\frac {2 x}{(1-4 x)^2}}}{2 (-1+4 x)}\right ) \, dx,x,x^2\right )\\ &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \frac {e^{\frac {2 x}{(1-4 x)^2}}}{-1+4 x} \, dx,x,x^2\right )\right )-\frac {3}{2} \operatorname {Subst}\left (\int \frac {e^{\frac {2 x}{(1-4 x)^2}}}{(-1+4 x)^2} \, dx,x,x^2\right )+\operatorname {Subst}\left (\int e^{\frac {2 x}{(1-4 x)^2}} \, dx,x,x^2\right )-\operatorname {Subst}\left (\int \frac {e^{\frac {2 x}{(1-4 x)^2}}}{(-1+4 x)^3} \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 20, normalized size = 0.71 \begin {gather*} e^{\frac {2 x^2}{\left (1-4 x^2\right )^2}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 24, normalized size = 0.86 \begin {gather*} x^{2} e^{\left (\frac {2 \, x^{2}}{16 \, x^{4} - 8 \, x^{2} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 0.86 \begin {gather*} x^{2} e^{\left (\frac {2 \, x^{2}}{16 \, x^{4} - 8 \, x^{2} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 25, normalized size = 0.89
method | result | size |
risch | \(x^{2} {\mathrm e}^{\frac {2 x^{2}}{\left (2 x -1\right )^{2} \left (2 x +1\right )^{2}}}\) | \(25\) |
gosper | \(x^{2} {\mathrm e}^{\frac {2 x^{2}}{16 x^{4}-8 x^{2}+1}}\) | \(26\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {2 x^{2}}{16 x^{4}-8 x^{2}+1}}-8 x^{4} {\mathrm e}^{\frac {2 x^{2}}{16 x^{4}-8 x^{2}+1}}+16 x^{6} {\mathrm e}^{\frac {2 x^{2}}{16 x^{4}-8 x^{2}+1}}}{\left (4 x^{2}-1\right )^{2}}\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 52, normalized size = 1.86 \begin {gather*} x^{2} e^{\left (\frac {1}{8 \, {\left (4 \, x^{2} + 4 \, x + 1\right )}} + \frac {1}{8 \, {\left (4 \, x^{2} - 4 \, x + 1\right )}} - \frac {1}{8 \, {\left (2 \, x + 1\right )}} + \frac {1}{8 \, {\left (2 \, x - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.03, size = 24, normalized size = 0.86 \begin {gather*} x^2\,{\mathrm {e}}^{\frac {2\,x^2}{16\,x^4-8\,x^2+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 20, normalized size = 0.71 \begin {gather*} x^{2} e^{\frac {2 x^{2}}{16 x^{4} - 8 x^{2} + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________