Optimal. Leaf size=19 \[ \left (2-2 e^{x^4} x^2\right ) (-x+\log (4)) \]
________________________________________________________________________________________
Rubi [C] time = 0.12, antiderivative size = 64, normalized size of antiderivative = 3.37, number of steps used = 10, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {2226, 2218, 2211, 2204, 2212} \begin {gather*} -\frac {2 x^7 \Gamma \left (\frac {7}{4},-x^4\right )}{\left (-x^4\right )^{7/4}}-\frac {3 x^3 \Gamma \left (\frac {3}{4},-x^4\right )}{2 \left (-x^4\right )^{3/4}}-2 e^{x^4} x^2 \log (4)-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2204
Rule 2211
Rule 2212
Rule 2218
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-2 x+\int e^{x^4} \left (6 x^2+8 x^6+\left (-4 x-8 x^5\right ) \log (4)\right ) \, dx\\ &=-2 x+\int \left (6 e^{x^4} x^2+8 e^{x^4} x^6-4 e^{x^4} x \log (4)-8 e^{x^4} x^5 \log (4)\right ) \, dx\\ &=-2 x+6 \int e^{x^4} x^2 \, dx+8 \int e^{x^4} x^6 \, dx-(4 \log (4)) \int e^{x^4} x \, dx-(8 \log (4)) \int e^{x^4} x^5 \, dx\\ &=-2 x-\frac {3 x^3 \Gamma \left (\frac {3}{4},-x^4\right )}{2 \left (-x^4\right )^{3/4}}-\frac {2 x^7 \Gamma \left (\frac {7}{4},-x^4\right )}{\left (-x^4\right )^{7/4}}-2 e^{x^4} x^2 \log (4)-(2 \log (4)) \operatorname {Subst}\left (\int e^{x^2} \, dx,x,x^2\right )+(4 \log (4)) \int e^{x^4} x \, dx\\ &=-2 x-\frac {3 x^3 \Gamma \left (\frac {3}{4},-x^4\right )}{2 \left (-x^4\right )^{3/4}}-\frac {2 x^7 \Gamma \left (\frac {7}{4},-x^4\right )}{\left (-x^4\right )^{7/4}}-2 e^{x^4} x^2 \log (4)-\sqrt {\pi } \text {erfi}\left (x^2\right ) \log (4)+(2 \log (4)) \operatorname {Subst}\left (\int e^{x^2} \, dx,x,x^2\right )\\ &=-2 x-\frac {3 x^3 \Gamma \left (\frac {3}{4},-x^4\right )}{2 \left (-x^4\right )^{3/4}}-\frac {2 x^7 \Gamma \left (\frac {7}{4},-x^4\right )}{\left (-x^4\right )^{7/4}}-2 e^{x^4} x^2 \log (4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.07, size = 64, normalized size = 3.37 \begin {gather*} -2 x+\frac {3 \sqrt [4]{-x^4} \Gamma \left (\frac {3}{4},-x^4\right )}{2 x}-\frac {2 \sqrt [4]{-x^4} \Gamma \left (\frac {7}{4},-x^4\right )}{x}-2 e^{x^4} x^2 \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.20, size = 21, normalized size = 1.11 \begin {gather*} 2 \, {\left (x^{3} - 2 \, x^{2} \log \relax (2)\right )} e^{\left (x^{4}\right )} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 24, normalized size = 1.26 \begin {gather*} 2 \, x^{3} e^{\left (x^{4}\right )} - 4 \, x^{2} e^{\left (x^{4}\right )} \log \relax (2) - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 23, normalized size = 1.21
method | result | size |
risch | \(\left (-4 x^{2} \ln \relax (2)+2 x^{3}\right ) {\mathrm e}^{x^{4}}-2 x\) | \(23\) |
default | \(-2 x +2 x^{3} {\mathrm e}^{x^{4}}-4 \ln \relax (2) x^{2} {\mathrm e}^{x^{4}}\) | \(25\) |
norman | \(-2 x +2 x^{3} {\mathrm e}^{x^{4}}-4 \ln \relax (2) x^{2} {\mathrm e}^{x^{4}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 80, normalized size = 4.21 \begin {gather*} -\frac {2 \, x^{7} \Gamma \left (\frac {7}{4}, -x^{4}\right )}{\left (-x^{4}\right )^{\frac {7}{4}}} - \frac {3 \, x^{3} \Gamma \left (\frac {3}{4}, -x^{4}\right )}{2 \, \left (-x^{4}\right )^{\frac {3}{4}}} + 2 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x^{2}\right ) \log \relax (2) - 2 \, {\left (2 \, x^{2} e^{\left (x^{4}\right )} + i \, \sqrt {\pi } \operatorname {erf}\left (i \, x^{2}\right )\right )} \log \relax (2) - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 24, normalized size = 1.26 \begin {gather*} 2\,x^3\,{\mathrm {e}}^{x^4}-2\,x-4\,x^2\,{\mathrm {e}}^{x^4}\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 1.05 \begin {gather*} - 2 x + \left (2 x^{3} - 4 x^{2} \log {\relax (2 )}\right ) e^{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________