Optimal. Leaf size=23 \[ \frac {x^3}{\log \left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+x^5+\left (x^2+x^3\right ) \log (x)+\left (3 x^3+3 x^4+3 x^2 \log (x)\right ) \log \left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (-1+x^3+(1+x) \log (x)+3 \left (x+x^2+\log (x)\right ) \log \left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )\right )}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx\\ &=\int \left (\frac {x^2 \left (-1+x^3+\log (x)+x \log (x)\right )}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )}+\frac {3 x^2}{\log \left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )}\right ) \, dx\\ &=3 \int \frac {x^2}{\log \left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx+\int \frac {x^2 \left (-1+x^3+\log (x)+x \log (x)\right )}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx\\ &=3 \int \frac {x^2}{\log \left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx+\int \left (-\frac {x^2}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )}+\frac {x^5}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )}+\frac {x^2 \log (x)}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )}+\frac {x^3 \log (x)}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )}\right ) \, dx\\ &=3 \int \frac {x^2}{\log \left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx-\int \frac {x^2}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx+\int \frac {x^5}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx+\int \frac {x^2 \log (x)}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx+\int \frac {x^3 \log (x)}{\left (x+x^2+\log (x)\right ) \log ^2\left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 23, normalized size = 1.00 \begin {gather*} \frac {x^3}{\log \left (\frac {e^{-x} \left (x+x^2+\log (x)\right )}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.44, size = 29, normalized size = 1.26 \begin {gather*} \frac {x^{3}}{\log \left (\frac {{\left (x^{2} + x\right )} e^{\left (-x\right )} + e^{\left (-x\right )} \log \relax (x)}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 21, normalized size = 0.91 \begin {gather*} -\frac {x^{3}}{x - \log \left (x^{2} + x + \log \relax (x)\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 278, normalized size = 12.09
method | result | size |
risch | \(\frac {2 i x^{3}}{\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\ln \relax (x )+x^{2}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )+x^{2}+x \right ) {\mathrm e}^{-x}}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )+x^{2}+x \right ) {\mathrm e}^{-x}}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )+x^{2}+x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\ln \relax (x )+x^{2}+x \right )\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\ln \relax (x )+x^{2}+x \right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )+x^{2}+x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\ln \relax (x )+x^{2}+x \right )\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\ln \relax (x )+x^{2}+x \right )\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\ln \relax (x )+x^{2}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )+x^{2}+x \right ) {\mathrm e}^{-x}}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )+x^{2}+x \right ) {\mathrm e}^{-x}}{x}\right )^{3}-2 i \ln \relax (x )+2 i \ln \left (\ln \relax (x )+x^{2}+x \right )-2 i \ln \left ({\mathrm e}^{x}\right )}\) | \(278\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 21, normalized size = 0.91 \begin {gather*} -\frac {x^{3}}{x - \log \left (x^{2} + x + \log \relax (x)\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.76, size = 156, normalized size = 6.78 \begin {gather*} 3\,x+\frac {3}{x+1}-3\,x^2+\frac {x^3+\frac {3\,x^3\,\ln \left (\frac {{\mathrm {e}}^{-x}\,\left (x+\ln \relax (x)+x^2\right )}{x}\right )\,\left (x+\ln \relax (x)+x^2\right )}{\ln \relax (x)+x\,\ln \relax (x)+x^3-1}}{\ln \left (\frac {{\mathrm {e}}^{-x}\,\left (x+\ln \relax (x)+x^2\right )}{x}\right )}-\frac {3\,\left (4\,x^{10}+8\,x^9+7\,x^8+10\,x^7+6\,x^6+4\,x^5+x^4\right )}{\left (x+1\right )\,\left (\ln \relax (x)\,\left (x+1\right )+x^3-1\right )\,\left (2\,x^5+3\,x^4+x^3+3\,x^2+x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 17, normalized size = 0.74 \begin {gather*} \frac {x^{3}}{\log {\left (\frac {\left (x^{2} + x + \log {\relax (x )}\right ) e^{- x}}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________