Optimal. Leaf size=21 \[ \frac {9}{\left (5-e^4+e^{-2+2 x}\right ) x} \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 27, normalized size of antiderivative = 1.29, number of steps used = 5, number of rules used = 4, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {6, 6741, 12, 6687} \begin {gather*} \frac {9 e^2}{\left (e^{2 x}+e^2 \left (5-e^4\right )\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6687
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-45+9 e^4+e^{-2+2 x} (-9-18 x)}{e^8 x^2+e^{-4+4 x} x^2+\left (25-10 e^4\right ) x^2+e^{-2+2 x} \left (10 x^2-2 e^4 x^2\right )} \, dx\\ &=\int \frac {-45+9 e^4+e^{-2+2 x} (-9-18 x)}{e^{-4+4 x} x^2+\left (25-10 e^4+e^8\right ) x^2+e^{-2+2 x} \left (10 x^2-2 e^4 x^2\right )} \, dx\\ &=\int \frac {e^4 \left (-45 \left (1-\frac {e^4}{5}\right )+e^{-2+2 x} (-9-18 x)\right )}{\left (e^{2 x}+5 e^2 \left (1-\frac {e^4}{5}\right )\right )^2 x^2} \, dx\\ &=e^4 \int \frac {-45 \left (1-\frac {e^4}{5}\right )+e^{-2+2 x} (-9-18 x)}{\left (e^{2 x}+5 e^2 \left (1-\frac {e^4}{5}\right )\right )^2 x^2} \, dx\\ &=\frac {9 e^2}{\left (e^{2 x}+e^2 \left (5-e^4\right )\right ) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 26, normalized size = 1.24 \begin {gather*} \frac {9 e^2}{\left (5 e^2-e^6+e^{2 x}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 21, normalized size = 1.00 \begin {gather*} -\frac {9}{x e^{4} - x e^{\left (2 \, x - 2\right )} - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 23, normalized size = 1.10 \begin {gather*} -\frac {9 \, e^{2}}{x e^{6} - 5 \, x e^{2} - x e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 20, normalized size = 0.95
method | result | size |
norman | \(-\frac {9}{x \left (-5+{\mathrm e}^{4}-{\mathrm e}^{2 x -2}\right )}\) | \(20\) |
risch | \(-\frac {9}{x \left (-5+{\mathrm e}^{4}-{\mathrm e}^{2 x -2}\right )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 23, normalized size = 1.10 \begin {gather*} -\frac {9 \, e^{2}}{x {\left (e^{6} - 5 \, e^{2}\right )} - x e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.36, size = 19, normalized size = 0.90 \begin {gather*} \frac {9}{x\,\left ({\mathrm {e}}^{2\,x-2}-{\mathrm {e}}^4+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.81 \begin {gather*} \frac {9}{x e^{2 x - 2} - x e^{4} + 5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________