Optimal. Leaf size=28 \[ -e^{9/2}-\frac {x}{\log \left (5-e^{e^{2 x}}-x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+2 e^{e^{2 x}+2 x} x+\left (5-e^{e^{2 x}}-x\right ) \log \left (5-e^{e^{2 x}}-x\right )}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{e^{2 x}+2 x} x}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )}-\frac {-x-5 \log \left (5-e^{e^{2 x}}-x\right )+e^{e^{2 x}} \log \left (5-e^{e^{2 x}}-x\right )+x \log \left (5-e^{e^{2 x}}-x\right )}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )}\right ) \, dx\\ &=2 \int \frac {e^{e^{2 x}+2 x} x}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )} \, dx-\int \frac {-x-5 \log \left (5-e^{e^{2 x}}-x\right )+e^{e^{2 x}} \log \left (5-e^{e^{2 x}}-x\right )+x \log \left (5-e^{e^{2 x}}-x\right )}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )} \, dx\\ &=2 \int \frac {e^{e^{2 x}+2 x} x}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )} \, dx-\int \frac {-\frac {x}{-5+e^{e^{2 x}}+x}+\log \left (5-e^{e^{2 x}}-x\right )}{\log ^2\left (5-e^{e^{2 x}}-x\right )} \, dx\\ &=2 \int \frac {e^{e^{2 x}+2 x} x}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )} \, dx-\int \left (-\frac {x}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )}+\frac {1}{\log \left (5-e^{e^{2 x}}-x\right )}\right ) \, dx\\ &=2 \int \frac {e^{e^{2 x}+2 x} x}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )} \, dx+\int \frac {x}{\left (-5+e^{e^{2 x}}+x\right ) \log ^2\left (5-e^{e^{2 x}}-x\right )} \, dx-\int \frac {1}{\log \left (5-e^{e^{2 x}}-x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 20, normalized size = 0.71 \begin {gather*} -\frac {x}{\log \left (5-e^{e^{2 x}}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 30, normalized size = 1.07 \begin {gather*} -\frac {x}{\log \left (-{\left ({\left (x - 5\right )} e^{\left (2 \, x\right )} + e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 281, normalized size = 10.04 \begin {gather*} -\frac {2 \, x e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )} \log \left (-{\left (x e^{\left (2 \, x\right )} - 5 \, e^{\left (2 \, x\right )} + e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-2 \, x\right )}\right ) + 4 \, x e^{\left (4 \, x + 2 \, e^{\left (2 \, x\right )}\right )} \log \left (-x - e^{\left (e^{\left (2 \, x\right )}\right )} + 5\right ) + 2 \, x e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )} \log \left (-x - e^{\left (e^{\left (2 \, x\right )}\right )} + 5\right ) + x \log \left (-{\left (x e^{\left (2 \, x\right )} - 5 \, e^{\left (2 \, x\right )} + e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-2 \, x\right )}\right )}{4 \, e^{\left (4 \, x + 2 \, e^{\left (2 \, x\right )}\right )} \log \left (-{\left (x e^{\left (2 \, x\right )} - 5 \, e^{\left (2 \, x\right )} + e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-2 \, x\right )}\right ) \log \left (-x - e^{\left (e^{\left (2 \, x\right )}\right )} + 5\right ) + 4 \, e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )} \log \left (-{\left (x e^{\left (2 \, x\right )} - 5 \, e^{\left (2 \, x\right )} + e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-2 \, x\right )}\right ) \log \left (-x - e^{\left (e^{\left (2 \, x\right )}\right )} + 5\right ) + \log \left (-{\left (x e^{\left (2 \, x\right )} - 5 \, e^{\left (2 \, x\right )} + e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-2 \, x\right )}\right ) \log \left (-x - e^{\left (e^{\left (2 \, x\right )}\right )} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 0.68
method | result | size |
risch | \(-\frac {x}{\ln \left (-{\mathrm e}^{{\mathrm e}^{2 x}}+5-x \right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.64 \begin {gather*} -\frac {x}{\log \left (-x - e^{\left (e^{\left (2 \, x\right )}\right )} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.08, size = 106, normalized size = 3.79 \begin {gather*} -\frac {{\mathrm {e}}^{-2\,x}\,\left (x\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{2\,x+{\mathrm {e}}^{2\,x}}\,\ln \left (5-{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}-x\right )-{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,\ln \left (5-{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}-x\right )+2\,x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{2\,x+{\mathrm {e}}^{2\,x}}\right )}{\ln \left (5-{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}-x\right )\,\left (2\,{\mathrm {e}}^{2\,x+{\mathrm {e}}^{2\,x}}+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 14, normalized size = 0.50 \begin {gather*} - \frac {x}{\log {\left (- x - e^{e^{2 x}} + 5 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________