Optimal. Leaf size=27 \[ \frac {3 e^{-x}}{x-\frac {2 \left (\frac {e^x}{3}+x\right )}{49 x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-62181 x^2-64827 x^3+e^x (-882+1764 x)}{4 e^{3 x}+e^{2 x} \left (24 x-588 x^2\right )+e^x \left (36 x^2-1764 x^3+21609 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {441 e^{-x} \left (e^x (-2+4 x)-3 x^2 (47+49 x)\right )}{\left (2 e^x+3 (2-49 x) x\right )^2} \, dx\\ &=441 \int \frac {e^{-x} \left (e^x (-2+4 x)-3 x^2 (47+49 x)\right )}{\left (2 e^x+3 (2-49 x) x\right )^2} \, dx\\ &=441 \int \left (\frac {3 e^{-x} x \left (2-100 x+49 x^2\right )}{\left (-2 e^x-6 x+147 x^2\right )^2}-\frac {e^{-x} (-1+2 x)}{-2 e^x-6 x+147 x^2}\right ) \, dx\\ &=-\left (441 \int \frac {e^{-x} (-1+2 x)}{-2 e^x-6 x+147 x^2} \, dx\right )+1323 \int \frac {e^{-x} x \left (2-100 x+49 x^2\right )}{\left (-2 e^x-6 x+147 x^2\right )^2} \, dx\\ &=-\left (441 \int \left (\frac {e^{-x}}{2 e^x+6 x-147 x^2}+\frac {2 e^{-x} x}{-2 e^x-6 x+147 x^2}\right ) \, dx\right )+1323 \int \left (\frac {2 e^{-x} x}{\left (-2 e^x-6 x+147 x^2\right )^2}-\frac {100 e^{-x} x^2}{\left (-2 e^x-6 x+147 x^2\right )^2}+\frac {49 e^{-x} x^3}{\left (-2 e^x-6 x+147 x^2\right )^2}\right ) \, dx\\ &=-\left (441 \int \frac {e^{-x}}{2 e^x+6 x-147 x^2} \, dx\right )-882 \int \frac {e^{-x} x}{-2 e^x-6 x+147 x^2} \, dx+2646 \int \frac {e^{-x} x}{\left (-2 e^x-6 x+147 x^2\right )^2} \, dx+64827 \int \frac {e^{-x} x^3}{\left (-2 e^x-6 x+147 x^2\right )^2} \, dx-132300 \int \frac {e^{-x} x^2}{\left (-2 e^x-6 x+147 x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 24, normalized size = 0.89 \begin {gather*} -\frac {441 e^{-x} x}{2 e^x+3 (2-49 x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 25, normalized size = 0.93 \begin {gather*} \frac {441 \, x}{3 \, {\left (49 \, x^{2} - 2 \, x\right )} e^{x} - 2 \, e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 24, normalized size = 0.89 \begin {gather*} \frac {441 \, x}{147 \, x^{2} e^{x} - 6 \, x e^{x} - 2 \, e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 0.85
method | result | size |
norman | \(\frac {441 x \,{\mathrm e}^{-x}}{147 x^{2}-6 x -2 \,{\mathrm e}^{x}}\) | \(23\) |
risch | \(\frac {147 \,{\mathrm e}^{-x}}{49 x -2}+\frac {294}{\left (49 x -2\right ) \left (147 x^{2}-6 x -2 \,{\mathrm e}^{x}\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 441 \, \int \frac {147 \, x^{3} + 141 \, x^{2} - 2 \, {\left (2 \, x - 1\right )} e^{x}}{12 \, {\left (49 \, x^{2} - 2 \, x\right )} e^{\left (2 \, x\right )} - 9 \, {\left (2401 \, x^{4} - 196 \, x^{3} + 4 \, x^{2}\right )} e^{x} - 4 \, e^{\left (3 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.38, size = 24, normalized size = 0.89 \begin {gather*} -\frac {441\,x}{2\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^x\,\left (6\,x-147\,x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 34, normalized size = 1.26 \begin {gather*} - \frac {7203}{- \frac {352947 x^{3}}{2} + 14406 x^{2} - 294 x + \left (2401 x - 98\right ) e^{x}} + \frac {147 e^{- x}}{49 x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________