Optimal. Leaf size=29 \[ -\frac {5 e^x}{4 x}+\frac {1}{2} x \left (x-\log \left (\frac {\log ^2(2)}{x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 32, normalized size of antiderivative = 1.10, number of steps used = 6, number of rules used = 4, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {12, 14, 2197, 2295} \begin {gather*} \frac {x^2}{2}-\frac {1}{2} x \log \left (\frac {\log ^2(2)}{x^2}\right )-\frac {5 e^x}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^x (5-5 x)+4 x^2+4 x^3-2 x^2 \log \left (\frac {\log ^2(2)}{x^2}\right )}{x^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {5 e^x (-1+x)}{x^2}+2 \left (2+2 x-\log \left (\frac {\log ^2(2)}{x^2}\right )\right )\right ) \, dx\\ &=\frac {1}{2} \int \left (2+2 x-\log \left (\frac {\log ^2(2)}{x^2}\right )\right ) \, dx-\frac {5}{4} \int \frac {e^x (-1+x)}{x^2} \, dx\\ &=-\frac {5 e^x}{4 x}+x+\frac {x^2}{2}-\frac {1}{2} \int \log \left (\frac {\log ^2(2)}{x^2}\right ) \, dx\\ &=-\frac {5 e^x}{4 x}+\frac {x^2}{2}-\frac {1}{2} x \log \left (\frac {\log ^2(2)}{x^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 32, normalized size = 1.10 \begin {gather*} -\frac {5 e^x}{4 x}+\frac {x^2}{2}-\frac {1}{2} x \log \left (\frac {\log ^2(2)}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 29, normalized size = 1.00 \begin {gather*} \frac {2 \, x^{3} - 2 \, x^{2} \log \left (\frac {\log \relax (2)^{2}}{x^{2}}\right ) - 5 \, e^{x}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.10 \begin {gather*} \frac {2 \, x^{3} + 2 \, x^{2} \log \left (x^{2}\right ) - 4 \, x^{2} \log \left (\log \relax (2)\right ) - 5 \, e^{x}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 27, normalized size = 0.93
method | result | size |
default | \(\frac {x^{2}}{2}-\frac {5 \,{\mathrm e}^{x}}{4 x}-\frac {x \ln \left (\frac {1}{x^{2}}\right )}{2}-x \ln \left (\ln \relax (2)\right )\) | \(27\) |
norman | \(\frac {\frac {x^{3}}{2}-\frac {x^{2} \ln \left (\frac {\ln \relax (2)^{2}}{x^{2}}\right )}{2}-\frac {5 \,{\mathrm e}^{x}}{4}}{x}\) | \(29\) |
risch | \(x \ln \relax (x )+\frac {-i x^{2} \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i x^{2} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i x^{2} \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-4 x^{2} \ln \left (\ln \relax (2)\right )+2 x^{3}-5 \,{\mathrm e}^{x}}{4 x}\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 29, normalized size = 1.00 \begin {gather*} \frac {1}{2} \, x^{2} - \frac {1}{2} \, x \log \left (\frac {\log \relax (2)^{2}}{x^{2}}\right ) - \frac {5}{4} \, {\rm Ei}\relax (x) + \frac {5}{4} \, \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.46, size = 26, normalized size = 0.90 \begin {gather*} \frac {x^2}{2}-x\,\left (\frac {\ln \left (\frac {1}{x^2}\right )}{2}+\ln \left (\ln \relax (2)\right )\right )-\frac {5\,{\mathrm {e}}^x}{4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 26, normalized size = 0.90 \begin {gather*} \frac {x^{2}}{2} - \frac {x \log {\left (\frac {\log {\relax (2 )}^{2}}{x^{2}} \right )}}{2} - \frac {5 e^{x}}{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________