Optimal. Leaf size=18 \[ 1-e^{9+x} (4+5 x)+\log \left (x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 24, normalized size of antiderivative = 1.33, number of steps used = 5, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {1593, 6688, 2176, 2194} \begin {gather*} -e^{x+9} (5 x+9)+5 e^{x+9}+2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8+10 x+e^{9+x} (4+5 x) \left (-9 x-5 x^2\right )}{x (4+5 x)} \, dx\\ &=\int \left (\frac {2}{x}-e^{9+x} (9+5 x)\right ) \, dx\\ &=2 \log (x)-\int e^{9+x} (9+5 x) \, dx\\ &=-e^{9+x} (9+5 x)+2 \log (x)+5 \int e^{9+x} \, dx\\ &=5 e^{9+x}-e^{9+x} (9+5 x)+2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 1.22 \begin {gather*} -e^x \left (4 e^9+5 e^9 x\right )+2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 17, normalized size = 0.94 \begin {gather*} -e^{\left (x + \log \left (5 \, x + 4\right ) + 9\right )} + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 18, normalized size = 1.00 \begin {gather*} -5 \, x e^{\left (x + 9\right )} - 4 \, e^{\left (x + 9\right )} + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.89
method | result | size |
risch | \(2 \ln \relax (x )+\left (-5 x -4\right ) {\mathrm e}^{x +9}\) | \(16\) |
norman | \(-{\mathrm e}^{\ln \left (4+5 x \right )+x +9}+2 \ln \relax (x )\) | \(18\) |
default | \(2 \ln \relax (x )-5 \,{\mathrm e}^{x +9} \left (x +9\right )+41 \,{\mathrm e}^{x +9}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {36}{5} \, e^{\frac {41}{5}} E_{1}\left (-x - \frac {4}{5}\right ) - \frac {5 \, {\left (5 \, x^{2} e^{9} + 8 \, x e^{9}\right )} e^{x}}{5 \, x + 4} + \int \frac {20 \, {\left (5 \, x e^{9} + 8 \, e^{9}\right )} e^{x}}{25 \, x^{2} + 40 \, x + 16}\,{d x} + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.85, size = 18, normalized size = 1.00 \begin {gather*} 2\,\ln \relax (x)-4\,{\mathrm {e}}^{x+9}-5\,x\,{\mathrm {e}}^{x+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.83 \begin {gather*} \left (- 5 x - 4\right ) e^{x + 9} + 2 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________