Optimal. Leaf size=26 \[ -x+3 \left (e^{-10+\left (1-\frac {4}{x}\right )^2}+x-x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 28, normalized size of antiderivative = 1.08, number of steps used = 3, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {14, 6706} \begin {gather*} 3 e^{\frac {16}{x^2}-\frac {8}{x}-9}-\frac {1}{3} (1-3 x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {24 e^{-9+\frac {16}{x^2}-\frac {8}{x}} (-4+x)}{x^3}-2 (-1+3 x)\right ) \, dx\\ &=-\frac {1}{3} (1-3 x)^2+24 \int \frac {e^{-9+\frac {16}{x^2}-\frac {8}{x}} (-4+x)}{x^3} \, dx\\ &=3 e^{-9+\frac {16}{x^2}-\frac {8}{x}}-\frac {1}{3} (1-3 x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 25, normalized size = 0.96 \begin {gather*} 3 e^{-9+\frac {16}{x^2}-\frac {8}{x}}+2 x-3 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 27, normalized size = 1.04 \begin {gather*} -3 \, x^{2} + 2 \, x + 3 \, e^{\left (-\frac {9 \, x^{2} + 8 \, x - 16}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 24, normalized size = 0.92 \begin {gather*} -3 \, x^{2} + 2 \, x + 3 \, e^{\left (-\frac {8}{x} + \frac {16}{x^{2}} - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 0.96
method | result | size |
derivativedivides | \(-3 x^{2}+2 x +3 \,{\mathrm e}^{-9-\frac {8}{x}+\frac {16}{x^{2}}}\) | \(25\) |
default | \(-3 x^{2}+2 x +3 \,{\mathrm e}^{-9-\frac {8}{x}+\frac {16}{x^{2}}}\) | \(25\) |
risch | \(-3 x^{2}+2 x +3 \,{\mathrm e}^{-\frac {9 x^{2}+8 x -16}{x^{2}}}\) | \(28\) |
norman | \(\frac {2 x^{3}-3 x^{4}+3 x^{2} {\mathrm e}^{\frac {-9 x^{2}-8 x +16}{x^{2}}}}{x^{2}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 24, normalized size = 0.92 \begin {gather*} -3 \, x^{2} + 2 \, x + 3 \, e^{\left (-\frac {8}{x} + \frac {16}{x^{2}} - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.70, size = 25, normalized size = 0.96 \begin {gather*} 2\,x-3\,x^2+3\,{\mathrm {e}}^{-9}\,{\mathrm {e}}^{-\frac {8}{x}}\,{\mathrm {e}}^{\frac {16}{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 24, normalized size = 0.92 \begin {gather*} - 3 x^{2} + 2 x + 3 e^{\frac {- 9 x^{2} - 8 x + 16}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________