Optimal. Leaf size=25 \[ 2 \left (-2+x-\frac {x}{e^{\frac {1}{x}}+x (3+x)-\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x+2 e^{2/x} x+20 x^3+12 x^4+2 x^5+e^{\frac {1}{x}} \left (-2-2 x+12 x^2+4 x^3\right )+\left (2 x-4 e^{\frac {1}{x}} x-12 x^2-4 x^3\right ) \log (x)+2 x \log ^2(x)}{e^{2/x} x+9 x^3+6 x^4+x^5+e^{\frac {1}{x}} \left (6 x^2+2 x^3\right )+\left (-2 e^{\frac {1}{x}} x-6 x^2-2 x^3\right ) \log (x)+x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (e^{2/x} x+e^{\frac {1}{x}} \left (-1-x+6 x^2+2 x^3\right )+x \left (-1+10 x^2+6 x^3+x^4\right )-x \left (-1+2 e^{\frac {1}{x}}+6 x+2 x^2\right ) \log (x)+x \log ^2(x)\right )}{x \left (e^{\frac {1}{x}}+x (3+x)-\log (x)\right )^2} \, dx\\ &=2 \int \frac {e^{2/x} x+e^{\frac {1}{x}} \left (-1-x+6 x^2+2 x^3\right )+x \left (-1+10 x^2+6 x^3+x^4\right )-x \left (-1+2 e^{\frac {1}{x}}+6 x+2 x^2\right ) \log (x)+x \log ^2(x)}{x \left (e^{\frac {1}{x}}+x (3+x)-\log (x)\right )^2} \, dx\\ &=2 \int \left (1-\frac {1+x}{x \left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )}+\frac {2 x+4 x^2+2 x^3-\log (x)}{x \left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2}\right ) \, dx\\ &=2 x-2 \int \frac {1+x}{x \left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )} \, dx+2 \int \frac {2 x+4 x^2+2 x^3-\log (x)}{x \left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2} \, dx\\ &=2 x-2 \int \left (\frac {1}{e^{\frac {1}{x}}+3 x+x^2-\log (x)}+\frac {1}{x \left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )}\right ) \, dx+2 \int \left (\frac {2}{\left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2}+\frac {4 x}{\left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2}+\frac {2 x^2}{\left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2}-\frac {\log (x)}{x \left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2}\right ) \, dx\\ &=2 x-2 \int \frac {1}{e^{\frac {1}{x}}+3 x+x^2-\log (x)} \, dx-2 \int \frac {1}{x \left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )} \, dx-2 \int \frac {\log (x)}{x \left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2} \, dx+4 \int \frac {1}{\left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2} \, dx+4 \int \frac {x^2}{\left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2} \, dx+8 \int \frac {x}{\left (e^{\frac {1}{x}}+3 x+x^2-\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 26, normalized size = 1.04 \begin {gather*} 2 \left (x+\frac {x}{-e^{\frac {1}{x}}-3 x-x^2+\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 42, normalized size = 1.68 \begin {gather*} \frac {2 \, {\left (x^{3} + 3 \, x^{2} + x e^{\frac {1}{x}} - x \log \relax (x) - x\right )}}{x^{2} + 3 \, x + e^{\frac {1}{x}} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 42, normalized size = 1.68 \begin {gather*} \frac {2 \, {\left (x^{3} + 3 \, x^{2} + x e^{\frac {1}{x}} - x \log \relax (x) - x\right )}}{x^{2} + 3 \, x + e^{\frac {1}{x}} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 25, normalized size = 1.00
method | result | size |
risch | \(2 x -\frac {2 x}{x^{2}+3 x +{\mathrm e}^{\frac {1}{x}}-\ln \relax (x )}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 42, normalized size = 1.68 \begin {gather*} \frac {2 \, {\left (x^{3} + 3 \, x^{2} + x e^{\frac {1}{x}} - x \log \relax (x) - x\right )}}{x^{2} + 3 \, x + e^{\frac {1}{x}} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.83, size = 24, normalized size = 0.96 \begin {gather*} 2\,x-\frac {2\,x}{3\,x+{\mathrm {e}}^{1/x}-\ln \relax (x)+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 20, normalized size = 0.80 \begin {gather*} 2 x - \frac {2 x}{x^{2} + 3 x + e^{\frac {1}{x}} - \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________