Optimal. Leaf size=20 \[ 64+x+\frac {1}{2} \left (5+\log \left (-4+\left (x^3+\log (2)\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 27, normalized size of antiderivative = 1.35, number of steps used = 8, number of rules used = 6, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {6, 1594, 1586, 1790, 1468, 628} \begin {gather*} \frac {1}{2} \log \left (-x^6-2 x^3 \log (2)+4-\log ^2(2)\right )+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 628
Rule 1468
Rule 1586
Rule 1594
Rule 1790
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x+x^6 (3+x)+x^3 (3+2 x) \log (2)+x \log ^2(2)}{x^7+2 x^4 \log (2)+x \left (-4+\log ^2(2)\right )} \, dx\\ &=\int \frac {x^6 (3+x)+x^3 (3+2 x) \log (2)+x \left (-4+\log ^2(2)\right )}{x^7+2 x^4 \log (2)+x \left (-4+\log ^2(2)\right )} \, dx\\ &=\int \frac {x^6 (3+x)+x^3 (3+2 x) \log (2)+x \left (-4+\log ^2(2)\right )}{x \left (-4+x^6+2 x^3 \log (2)+\log ^2(2)\right )} \, dx\\ &=\int \frac {-4+3 x^5+x^6+3 x^2 \log (2)+2 x^3 \log (2)+\log ^2(2)}{-4+x^6+2 x^3 \log (2)+\log ^2(2)} \, dx\\ &=\int \left (1+\frac {x^2 \left (3 x^3+3 \log (2)\right )}{-4+x^6+2 x^3 \log (2)+\log ^2(2)}\right ) \, dx\\ &=x+\int \frac {x^2 \left (3 x^3+3 \log (2)\right )}{-4+x^6+2 x^3 \log (2)+\log ^2(2)} \, dx\\ &=x+\frac {1}{3} \operatorname {Subst}\left (\int \frac {3 x+3 \log (2)}{-4+x^2+2 x \log (2)+\log ^2(2)} \, dx,x,x^3\right )\\ &=x+\frac {1}{2} \log \left (4-x^6-2 x^3 \log (2)-\log ^2(2)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.03, size = 62, normalized size = 3.10 \begin {gather*} x+\frac {1}{3} \text {RootSum}\left [-4+\log ^2(2)+\log (4) \text {$\#$1}^3+\text {$\#$1}^6\&,\frac {\log (8) \log (x-\text {$\#$1})+3 \log (x-\text {$\#$1}) \text {$\#$1}^3}{\log (4)+2 \text {$\#$1}^3}\&\right ] \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 21, normalized size = 1.05 \begin {gather*} x + \frac {1}{2} \, \log \left (x^{6} + 2 \, x^{3} \log \relax (2) + \log \relax (2)^{2} - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 1.20 \begin {gather*} x + \frac {1}{2} \, \log \left ({\left | x^{3} + \log \relax (2) + 2 \right |}\right ) + \frac {1}{2} \, \log \left ({\left | x^{3} + \log \relax (2) - 2 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 1.10
method | result | size |
risch | \(x +\frac {\ln \left (x^{6}+2 x^{3} \ln \relax (2)+\ln \relax (2)^{2}-4\right )}{2}\) | \(22\) |
default | \(x +\frac {\ln \left (x^{3}+\ln \relax (2)+2\right )}{2}+\frac {\ln \left (x^{3}+\ln \relax (2)-2\right )}{2}\) | \(23\) |
norman | \(x +\frac {\ln \left (x^{3}+\ln \relax (2)+2\right )}{2}+\frac {\ln \left (x^{3}+\ln \relax (2)-2\right )}{2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 22, normalized size = 1.10 \begin {gather*} x + \frac {1}{2} \, \log \left (x^{3} + \log \relax (2) + 2\right ) + \frac {1}{2} \, \log \left (x^{3} + \log \relax (2) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.99, size = 21, normalized size = 1.05 \begin {gather*} x+\frac {\ln \left (x^6+2\,\ln \relax (2)\,x^3+{\ln \relax (2)}^2-4\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 22, normalized size = 1.10 \begin {gather*} x + \frac {\log {\left (x^{6} + 2 x^{3} \log {\relax (2 )} - 4 + \log {\relax (2 )}^{2} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________