Optimal. Leaf size=21 \[ 3+\left (5+x^2+\frac {3}{20-e^5+x}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 46, normalized size of antiderivative = 2.19, number of steps used = 2, number of rules used = 1, integrand size = 139, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.007, Rules used = {2074} \begin {gather*} x^4+10 x^2+6 x+\frac {6 \left (405-40 e^5+e^{10}\right )}{x-e^5+20}+\frac {9}{\left (x-e^5+20\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (6+\frac {18}{\left (-20+e^5-x\right )^3}-\frac {6 \left (405-40 e^5+e^{10}\right )}{\left (-20+e^5-x\right )^2}+20 x+4 x^3\right ) \, dx\\ &=6 x+10 x^2+x^4+\frac {9}{\left (20-e^5+x\right )^2}+\frac {6 \left (405-40 e^5+e^{10}\right )}{20-e^5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 83, normalized size = 3.95 \begin {gather*} -163880+80 e^{15}-e^{20}+e^5 \left (32394+\frac {240}{-20+e^5-x}\right )+6 x+10 x^2+x^4+\frac {9}{\left (20-e^5+x\right )^2}+\frac {2430}{20-e^5+x}+e^{10} \left (-2410+\frac {6}{20-e^5+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 95, normalized size = 4.52 \begin {gather*} \frac {x^{6} + 40 \, x^{5} + 410 \, x^{4} + 406 \, x^{3} + 4240 \, x^{2} + {\left (x^{4} + 10 \, x^{2} + 12 \, x + 360\right )} e^{10} - 2 \, {\left (x^{5} + 20 \, x^{4} + 10 \, x^{3} + 206 \, x^{2} + 240 \, x + 3615\right )} e^{5} + 4830 \, x - 6 \, e^{15} + 48609}{x^{2} - 2 \, {\left (x + 20\right )} e^{5} + 40 \, x + e^{10} + 400} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, x^{6} + 120 \, x^{5} + 2410 \, x^{4} + 16603 \, x^{3} + 12180 \, x^{2} - 2 \, {\left (x^{3} + 5 \, x\right )} e^{15} + 6 \, {\left (x^{4} + 20 \, x^{3} + 5 \, x^{2} + 101 \, x\right )} e^{10} - 3 \, {\left (2 \, x^{5} + 80 \, x^{4} + 810 \, x^{3} + 403 \, x^{2} + 4080 \, x - 5\right )} e^{5} + 82385 \, x - 309\right )}}{x^{3} + 60 \, x^{2} + 3 \, {\left (x + 20\right )} e^{10} - 3 \, {\left (x^{2} + 40 \, x + 400\right )} e^{5} + 1200 \, x - e^{15} + 8000}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 61, normalized size = 2.90
method | result | size |
risch | \(x^{4}+10 x^{2}+6 x +\frac {\left (6 \,{\mathrm e}^{10}-240 \,{\mathrm e}^{5}+2430\right ) x -6 \,{\mathrm e}^{15}+360 \,{\mathrm e}^{10}-7230 \,{\mathrm e}^{5}+48609}{{\mathrm e}^{10}-2 x \,{\mathrm e}^{5}+x^{2}-40 \,{\mathrm e}^{5}+40 x +400}\) | \(61\) |
norman | \(\frac {x^{6}+\left (-20 \,{\mathrm e}^{5}+406\right ) x^{3}+\left (-2 \,{\mathrm e}^{5}+40\right ) x^{5}+\left ({\mathrm e}^{10}-40 \,{\mathrm e}^{5}+410\right ) x^{4}+\left (20 \,{\mathrm e}^{15}-1212 \,{\mathrm e}^{10}+24480 \,{\mathrm e}^{5}-164770\right ) x -10 \,{\mathrm e}^{20}+806 \,{\mathrm e}^{15}-24360 \,{\mathrm e}^{10}+327170 \,{\mathrm e}^{5}-1647391}{\left ({\mathrm e}^{5}-x -20\right )^{2}}\) | \(92\) |
default | \(x^{4}+10 x^{2}+6 x -2 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+\left (-3 \,{\mathrm e}^{5}+60\right ) \textit {\_Z}^{2}+\left (-120 \,{\mathrm e}^{5}+3 \,{\mathrm e}^{10}+1200\right ) \textit {\_Z} -1200 \,{\mathrm e}^{5}+60 \,{\mathrm e}^{10}-{\mathrm e}^{15}+8000\right )}{\sum }\frac {\left (8103-40 \textit {\_R} \,{\mathrm e}^{5}+\textit {\_R} \,{\mathrm e}^{10}-1205 \,{\mathrm e}^{5}+60 \,{\mathrm e}^{10}-{\mathrm e}^{15}+405 \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{400+{\mathrm e}^{10}-2 \textit {\_R} \,{\mathrm e}^{5}+\textit {\_R}^{2}-40 \,{\mathrm e}^{5}+40 \textit {\_R}}\right )\) | \(112\) |
gosper | \(-\frac {-x^{4} {\mathrm e}^{10}+2 x^{5} {\mathrm e}^{5}-x^{6}+40 x^{4} {\mathrm e}^{5}-40 x^{5}+10 \,{\mathrm e}^{20}-20 x \,{\mathrm e}^{15}+20 x^{3} {\mathrm e}^{5}-410 x^{4}-806 \,{\mathrm e}^{15}+1212 x \,{\mathrm e}^{10}-406 x^{3}+24360 \,{\mathrm e}^{10}-24480 x \,{\mathrm e}^{5}-327170 \,{\mathrm e}^{5}+164770 x +1647391}{{\mathrm e}^{10}-2 x \,{\mathrm e}^{5}+x^{2}-40 \,{\mathrm e}^{5}+40 x +400}\) | \(122\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 59, normalized size = 2.81 \begin {gather*} x^{4} + 10 \, x^{2} + 6 \, x + \frac {3 \, {\left (2 \, x {\left (e^{10} - 40 \, e^{5} + 405\right )} - 2 \, e^{15} + 120 \, e^{10} - 2410 \, e^{5} + 16203\right )}}{x^{2} - 2 \, x {\left (e^{5} - 20\right )} + e^{10} - 40 \, e^{5} + 400} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.04, size = 126, normalized size = 6.00 \begin {gather*} \frac {360\,{\mathrm {e}}^{10}-7230\,{\mathrm {e}}^5-6\,{\mathrm {e}}^{15}+x\,\left (6\,{\mathrm {e}}^{10}-240\,{\mathrm {e}}^5+2430\right )+48609}{x^2+\left (40-2\,{\mathrm {e}}^5\right )\,x-40\,{\mathrm {e}}^5+{\mathrm {e}}^{10}+400}-x^2\,\left (240\,{\mathrm {e}}^5-6\,{\mathrm {e}}^{10}+6\,{\left ({\mathrm {e}}^5-20\right )}^2-2410\right )+x^4-x\,\left (4860\,{\mathrm {e}}^5-240\,{\mathrm {e}}^{10}+4\,{\mathrm {e}}^{15}-4\,{\left ({\mathrm {e}}^5-20\right )}^3+\left (3\,{\mathrm {e}}^5-60\right )\,\left (480\,{\mathrm {e}}^5-12\,{\mathrm {e}}^{10}+12\,{\left ({\mathrm {e}}^5-20\right )}^2-4820\right )-33206\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 63, normalized size = 3.00 \begin {gather*} x^{4} + 10 x^{2} + 6 x + \frac {x \left (- 240 e^{5} + 2430 + 6 e^{10}\right ) - 6 e^{15} - 7230 e^{5} + 48609 + 360 e^{10}}{x^{2} + x \left (40 - 2 e^{5}\right ) - 40 e^{5} + 400 + e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________