Optimal. Leaf size=25 \[ \log \left (\frac {4 e^{x/3} (16-x) x^2}{-8+x+\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.46, antiderivative size = 28, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 5, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {6741, 12, 6742, 893, 6684} \begin {gather*} \frac {x}{3}+\log (16-x)+2 \log (x)-\log (-x-\log (x)+8) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 893
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {816+5 x-18 x^2+x^3+\left (-96-7 x+x^2\right ) \log (x)}{3 (16-x) x (8-x-\log (x))} \, dx\\ &=\frac {1}{3} \int \frac {816+5 x-18 x^2+x^3+\left (-96-7 x+x^2\right ) \log (x)}{(16-x) x (8-x-\log (x))} \, dx\\ &=\frac {1}{3} \int \left (\frac {-96-7 x+x^2}{(-16+x) x}-\frac {3 (1+x)}{x (-8+x+\log (x))}\right ) \, dx\\ &=\frac {1}{3} \int \frac {-96-7 x+x^2}{(-16+x) x} \, dx-\int \frac {1+x}{x (-8+x+\log (x))} \, dx\\ &=-\log (8-x-\log (x))+\frac {1}{3} \int \left (1+\frac {3}{-16+x}+\frac {6}{x}\right ) \, dx\\ &=\frac {x}{3}+\log (16-x)+2 \log (x)-\log (8-x-\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 30, normalized size = 1.20 \begin {gather*} \frac {1}{3} (x+3 \log (16-x)+6 \log (x)-3 \log (8-x-\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 20, normalized size = 0.80 \begin {gather*} \frac {1}{3} \, x - \log \left (x + \log \relax (x) - 8\right ) + \log \left (x - 16\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 0.96 \begin {gather*} \frac {1}{3} \, x + \log \left (x - 16\right ) + 2 \, \log \relax (x) - \log \left (-x - \log \relax (x) + 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.84
method | result | size |
norman | \(\frac {x}{3}+2 \ln \relax (x )-\ln \left (\ln \relax (x )-8+x \right )+\ln \left (x -16\right )\) | \(21\) |
risch | \(\frac {x}{3}+2 \ln \relax (x )-\ln \left (\ln \relax (x )-8+x \right )+\ln \left (x -16\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 20, normalized size = 0.80 \begin {gather*} \frac {1}{3} \, x - \log \left (x + \log \relax (x) - 8\right ) + \log \left (x - 16\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.69, size = 20, normalized size = 0.80 \begin {gather*} \frac {x}{3}-\ln \left (x+\ln \relax (x)-8\right )+\ln \left (x-16\right )+2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 20, normalized size = 0.80 \begin {gather*} \frac {x}{3} + 2 \log {\relax (x )} + \log {\left (x - 16 \right )} - \log {\left (x + \log {\relax (x )} - 8 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________