Optimal. Leaf size=17 \[ \left (x+\log \left (4+x+e^3 \left (4+x^2\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {6741, 12, 6686} \begin {gather*} \left (\log \left (e^3 \left (x^2+4\right )+x+4\right )+x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (5+4 e^3+\left (1+2 e^3\right ) x+e^3 x^2\right ) \left (x+\log \left (4+x+e^3 \left (4+x^2\right )\right )\right )}{4 \left (1+e^3\right )+x+e^3 x^2} \, dx\\ &=2 \int \frac {\left (5+4 e^3+\left (1+2 e^3\right ) x+e^3 x^2\right ) \left (x+\log \left (4+x+e^3 \left (4+x^2\right )\right )\right )}{4 \left (1+e^3\right )+x+e^3 x^2} \, dx\\ &=\left (x+\log \left (4+x+e^3 \left (4+x^2\right )\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 1.00 \begin {gather*} \left (x+\log \left (4+x+e^3 \left (4+x^2\right )\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.51, size = 33, normalized size = 1.94 \begin {gather*} x^{2} + 2 \, x \log \left ({\left (x^{2} + 4\right )} e^{3} + x + 4\right ) + \log \left ({\left (x^{2} + 4\right )} e^{3} + x + 4\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 37, normalized size = 2.18 \begin {gather*} x^{2} + 2 \, x \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right ) + \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.38, size = 34, normalized size = 2.00
method | result | size |
norman | \(x^{2}+\ln \left (\left (x^{2}+4\right ) {\mathrm e}^{3}+4+x \right )^{2}+2 x \ln \left (\left (x^{2}+4\right ) {\mathrm e}^{3}+4+x \right )\) | \(34\) |
risch | \(x^{2}+\ln \left (\left (x^{2}+4\right ) {\mathrm e}^{3}+4+x \right )^{2}+2 x \ln \left (\left (x^{2}+4\right ) {\mathrm e}^{3}+4+x \right )\) | \(34\) |
default | error in gcdex: invalid arguments\ | N/A |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 439, normalized size = 25.82 \begin {gather*} 2 \, \sqrt {16 \, e^{6} + 16 \, e^{3} - 1} \arctan \left (\frac {2 \, x e^{3} + 1}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}}\right ) e^{\left (-3\right )} - \frac {2 \, {\left (8 \, e^{6} + 8 \, e^{3} - 1\right )} \arctan \left (\frac {2 \, x e^{3} + 1}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}}\right ) e^{\left (-6\right )}}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}} - {\left ({\left (4 \, e^{6} + 4 \, e^{3} - 1\right )} e^{\left (-9\right )} \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right ) - \frac {2 \, {\left (12 \, e^{6} + 12 \, e^{3} - 1\right )} \arctan \left (\frac {2 \, x e^{3} + 1}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}}\right ) e^{\left (-9\right )}}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}} - {\left (x^{2} e^{3} - 2 \, x\right )} e^{\left (-6\right )}\right )} e^{3} - 2 \, {\left (\frac {2 \, {\left (8 \, e^{6} + 8 \, e^{3} - 1\right )} \arctan \left (\frac {2 \, x e^{3} + 1}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}}\right ) e^{\left (-6\right )}}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}} - 2 \, x e^{\left (-3\right )} + e^{\left (-6\right )} \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right )\right )} e^{3} + 4 \, {\left (e^{\left (-3\right )} \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right ) - \frac {2 \, \arctan \left (\frac {2 \, x e^{3} + 1}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}}\right ) e^{\left (-3\right )}}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}}\right )} e^{3} + {\left (e^{3} \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right )^{2} - 4 \, x e^{3} + {\left (2 \, x e^{3} + 1\right )} \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right )\right )} e^{\left (-3\right )} + 2 \, x e^{\left (-3\right )} + 5 \, e^{\left (-3\right )} \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right ) - e^{\left (-6\right )} \log \left (x^{2} e^{3} + x + 4 \, e^{3} + 4\right ) - \frac {10 \, \arctan \left (\frac {2 \, x e^{3} + 1}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}}\right ) e^{\left (-3\right )}}{\sqrt {16 \, e^{6} + 16 \, e^{3} - 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.99, size = 16, normalized size = 0.94 \begin {gather*} {\left (x+\ln \left (x+{\mathrm {e}}^3\,\left (x^2+4\right )+4\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 34, normalized size = 2.00 \begin {gather*} x^{2} + 2 x \log {\left (x + \left (x^{2} + 4\right ) e^{3} + 4 \right )} + \log {\left (x + \left (x^{2} + 4\right ) e^{3} + 4 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________