Optimal. Leaf size=15 \[ \frac {x^2}{\left (e+e^x\right ) \log (25)} \]
________________________________________________________________________________________
Rubi [A] time = 0.63, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 26, number of rules used = 12, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {6688, 12, 6742, 2184, 2190, 2279, 2391, 2531, 2282, 6589, 2185, 2191} \begin {gather*} \frac {x^2}{\left (e^x+e\right ) \log (25)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2279
Rule 2282
Rule 2391
Rule 2531
Rule 6589
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e x-e^x (-2+x) x}{\left (e+e^x\right )^2 \log (25)} \, dx\\ &=\frac {\int \frac {2 e x-e^x (-2+x) x}{\left (e+e^x\right )^2} \, dx}{\log (25)}\\ &=\frac {\int \left (-\frac {(-2+x) x}{e+e^x}+\frac {e x^2}{\left (e+e^x\right )^2}\right ) \, dx}{\log (25)}\\ &=-\frac {\int \frac {(-2+x) x}{e+e^x} \, dx}{\log (25)}+\frac {e \int \frac {x^2}{\left (e+e^x\right )^2} \, dx}{\log (25)}\\ &=-\frac {\int \frac {e^x x^2}{\left (e+e^x\right )^2} \, dx}{\log (25)}+\frac {\int \frac {x^2}{e+e^x} \, dx}{\log (25)}-\frac {\int \left (-\frac {2 x}{e+e^x}+\frac {x^2}{e+e^x}\right ) \, dx}{\log (25)}\\ &=\frac {x^2}{\left (e+e^x\right ) \log (25)}+\frac {x^3}{3 e \log (25)}-\frac {\int \frac {x^2}{e+e^x} \, dx}{\log (25)}-\frac {\int \frac {e^x x^2}{e+e^x} \, dx}{e \log (25)}\\ &=\frac {x^2}{\left (e+e^x\right ) \log (25)}-\frac {x^2 \log \left (1+e^{-1+x}\right )}{e \log (25)}+\frac {\int \frac {e^x x^2}{e+e^x} \, dx}{e \log (25)}+\frac {2 \int x \log \left (1+e^{-1+x}\right ) \, dx}{e \log (25)}\\ &=\frac {x^2}{\left (e+e^x\right ) \log (25)}-\frac {2 x \text {Li}_2\left (-e^{-1+x}\right )}{e \log (25)}-\frac {2 \int x \log \left (1+e^{-1+x}\right ) \, dx}{e \log (25)}+\frac {2 \int \text {Li}_2\left (-e^{-1+x}\right ) \, dx}{e \log (25)}\\ &=\frac {x^2}{\left (e+e^x\right ) \log (25)}-\frac {2 \int \text {Li}_2\left (-e^{-1+x}\right ) \, dx}{e \log (25)}+\frac {2 \operatorname {Subst}\left (\int \frac {\text {Li}_2(-x)}{x} \, dx,x,e^{-1+x}\right )}{e \log (25)}\\ &=\frac {x^2}{\left (e+e^x\right ) \log (25)}+\frac {2 \text {Li}_3\left (-e^{-1+x}\right )}{e \log (25)}-\frac {2 \operatorname {Subst}\left (\int \frac {\text {Li}_2(-x)}{x} \, dx,x,e^{-1+x}\right )}{e \log (25)}\\ &=\frac {x^2}{\left (e+e^x\right ) \log (25)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 15, normalized size = 1.00 \begin {gather*} \frac {x^2}{\left (e+e^x\right ) \log (25)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 22, normalized size = 1.47 \begin {gather*} \frac {x^{2} e}{2 \, {\left (e^{2} \log \relax (5) + e^{\left (x + 1\right )} \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 1.20 \begin {gather*} \frac {x^{2}}{2 \, {\left (e \log \relax (5) + e^{x} \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 17, normalized size = 1.13
method | result | size |
norman | \(\frac {x^{2}}{2 \ln \relax (5) \left ({\mathrm e}+{\mathrm e}^{x}\right )}\) | \(17\) |
risch | \(\frac {x^{2}}{2 \ln \relax (5) \left ({\mathrm e}+{\mathrm e}^{x}\right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 18, normalized size = 1.20 \begin {gather*} \frac {x^{2}}{2 \, {\left (e \log \relax (5) + e^{x} \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.80, size = 16, normalized size = 1.07 \begin {gather*} \frac {x^2}{2\,\ln \relax (5)\,\left (\mathrm {e}+{\mathrm {e}}^x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 1.27 \begin {gather*} \frac {x^{2}}{2 e^{x} \log {\relax (5 )} + 2 e \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________