Optimal. Leaf size=27 \[ x-\frac {15 x}{\log (-8+x)}+\frac {4}{\log \left (1-\frac {\log (2 x)}{x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.76, antiderivative size = 39, normalized size of antiderivative = 1.44, number of steps used = 14, number of rules used = 10, integrand size = 179, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {6688, 2411, 2353, 2297, 2298, 2302, 30, 2389, 6742, 6686} \begin {gather*} x+\frac {15 (8-x)}{\log (x-8)}-\frac {120}{\log (x-8)}+\frac {4}{\log \left (1-\frac {\log (2 x)}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 2389
Rule 2411
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {15 x}{(-8+x) \log ^2(-8+x)}-\frac {15}{\log (-8+x)}+\frac {4+x^2 \log ^2\left (1-\frac {\log (2 x)}{x}\right )-\log (2 x) \left (4+x \log ^2\left (1-\frac {\log (2 x)}{x}\right )\right )}{x (x-\log (2 x)) \log ^2\left (1-\frac {\log (2 x)}{x}\right )}\right ) \, dx\\ &=15 \int \frac {x}{(-8+x) \log ^2(-8+x)} \, dx-15 \int \frac {1}{\log (-8+x)} \, dx+\int \frac {4+x^2 \log ^2\left (1-\frac {\log (2 x)}{x}\right )-\log (2 x) \left (4+x \log ^2\left (1-\frac {\log (2 x)}{x}\right )\right )}{x (x-\log (2 x)) \log ^2\left (1-\frac {\log (2 x)}{x}\right )} \, dx\\ &=15 \operatorname {Subst}\left (\int \frac {8+x}{x \log ^2(x)} \, dx,x,-8+x\right )-15 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-8+x\right )+\int \left (1-\frac {4 (-1+\log (2 x))}{x (x-\log (2 x)) \log ^2\left (1-\frac {\log (2 x)}{x}\right )}\right ) \, dx\\ &=x-15 \text {li}(-8+x)-4 \int \frac {-1+\log (2 x)}{x (x-\log (2 x)) \log ^2\left (1-\frac {\log (2 x)}{x}\right )} \, dx+15 \operatorname {Subst}\left (\int \left (\frac {1}{\log ^2(x)}+\frac {8}{x \log ^2(x)}\right ) \, dx,x,-8+x\right )\\ &=x+\frac {4}{\log \left (1-\frac {\log (2 x)}{x}\right )}-15 \text {li}(-8+x)+15 \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,-8+x\right )+120 \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-8+x\right )\\ &=x+\frac {15 (8-x)}{\log (-8+x)}+\frac {4}{\log \left (1-\frac {\log (2 x)}{x}\right )}-15 \text {li}(-8+x)+15 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-8+x\right )+120 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (-8+x)\right )\\ &=x-\frac {120}{\log (-8+x)}+\frac {15 (8-x)}{\log (-8+x)}+\frac {4}{\log \left (1-\frac {\log (2 x)}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 27, normalized size = 1.00 \begin {gather*} x-\frac {15 x}{\log (-8+x)}+\frac {4}{\log \left (1-\frac {\log (2 x)}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 53, normalized size = 1.96 \begin {gather*} \frac {{\left (x \log \left (x - 8\right ) - 15 \, x\right )} \log \left (\frac {x - \log \left (2 \, x\right )}{x}\right ) + 4 \, \log \left (x - 8\right )}{\log \left (x - 8\right ) \log \left (\frac {x - \log \left (2 \, x\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.76, size = 176, normalized size = 6.52 \begin {gather*} x + \frac {4 \, {\left (x \log \relax (2) - \log \relax (2) \log \left (2 \, x\right ) + x \log \relax (x) - \log \left (2 \, x\right ) \log \relax (x) - x + \log \left (2 \, x\right )\right )}}{x \log \left (2 \, x\right ) \log \left (x - \log \left (2 \, x\right )\right ) - \log \relax (2) \log \left (2 \, x\right ) \log \left (x - \log \left (2 \, x\right )\right ) - x \log \left (2 \, x\right ) \log \relax (x) + \log \relax (2) \log \left (2 \, x\right ) \log \relax (x) - \log \left (2 \, x\right ) \log \left (x - \log \left (2 \, x\right )\right ) \log \relax (x) + \log \left (2 \, x\right ) \log \relax (x)^{2} - x \log \left (x - \log \left (2 \, x\right )\right ) + \log \relax (2) \log \left (x - \log \left (2 \, x\right )\right ) + x \log \relax (x) - \log \relax (2) \log \relax (x) + \log \left (x - \log \left (2 \, x\right )\right ) \log \relax (x) - \log \relax (x)^{2}} - \frac {15 \, x}{\log \left (x - 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (\left (x^{2}-8 x \right ) \ln \left (-8+x \right )^{2}+\left (-15 x^{2}+120 x \right ) \ln \left (-8+x \right )+15 x^{2}\right ) \ln \left (2 x \right )+\left (-x^{3}+8 x^{2}\right ) \ln \left (-8+x \right )^{2}+\left (15 x^{3}-120 x^{2}\right ) \ln \left (-8+x \right )-15 x^{3}\right ) \ln \left (\frac {x -\ln \left (2 x \right )}{x}\right )^{2}+\left (4 x -32\right ) \ln \left (-8+x \right )^{2} \ln \left (2 x \right )+\left (-4 x +32\right ) \ln \left (-8+x \right )^{2}}{\left (\left (x^{2}-8 x \right ) \ln \left (-8+x \right )^{2} \ln \left (2 x \right )+\left (-x^{3}+8 x^{2}\right ) \ln \left (-8+x \right )^{2}\right ) \ln \left (\frac {x -\ln \left (2 x \right )}{x}\right )^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 68, normalized size = 2.52 \begin {gather*} \frac {{\left (x \log \left (x - 8\right ) - 15 \, x\right )} \log \left (x - \log \relax (2) - \log \relax (x)\right ) - {\left (x \log \relax (x) - 4\right )} \log \left (x - 8\right ) + 15 \, x \log \relax (x)}{\log \left (x - \log \relax (2) - \log \relax (x)\right ) \log \left (x - 8\right ) - \log \left (x - 8\right ) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.20, size = 44, normalized size = 1.63 \begin {gather*} \frac {4}{\ln \left (\frac {x-\ln \left (2\,x\right )}{x}\right )}-\frac {15\,x-\ln \left (x-8\right )\,\left (15\,x-120\right )}{\ln \left (x-8\right )}-14\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 20, normalized size = 0.74 \begin {gather*} x - \frac {15 x}{\log {\left (x - 8 \right )}} + \frac {4}{\log {\left (\frac {x - \log {\left (2 x \right )}}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________