Optimal. Leaf size=25 \[ \frac {28}{3 \left (5-e^x\right ) \left (\frac {4}{3}-x\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 1.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-560+840 x+e^x \left (112-56 x-84 x^2\right )}{400 x^2-600 x^3+225 x^4+e^x \left (-160 x^2+240 x^3-90 x^4\right )+e^{2 x} \left (16 x^2-24 x^3+9 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {28 \left (-20+30 x-e^x \left (-4+2 x+3 x^2\right )\right )}{\left (5-e^x\right )^2 (4-3 x)^2 x^2} \, dx\\ &=28 \int \frac {-20+30 x-e^x \left (-4+2 x+3 x^2\right )}{\left (5-e^x\right )^2 (4-3 x)^2 x^2} \, dx\\ &=28 \int \left (-\frac {5}{\left (-5+e^x\right )^2 x (-4+3 x)}-\frac {-4+2 x+3 x^2}{\left (-5+e^x\right ) x^2 (-4+3 x)^2}\right ) \, dx\\ &=-\left (28 \int \frac {-4+2 x+3 x^2}{\left (-5+e^x\right ) x^2 (-4+3 x)^2} \, dx\right )-140 \int \frac {1}{\left (-5+e^x\right )^2 x (-4+3 x)} \, dx\\ &=-\left (28 \int \left (-\frac {1}{4 \left (-5+e^x\right ) x^2}-\frac {1}{4 \left (-5+e^x\right ) x}+\frac {9}{4 \left (-5+e^x\right ) (-4+3 x)^2}+\frac {3}{4 \left (-5+e^x\right ) (-4+3 x)}\right ) \, dx\right )-140 \int \left (-\frac {1}{4 \left (-5+e^x\right )^2 x}+\frac {3}{4 \left (-5+e^x\right )^2 (-4+3 x)}\right ) \, dx\\ &=7 \int \frac {1}{\left (-5+e^x\right ) x^2} \, dx+7 \int \frac {1}{\left (-5+e^x\right ) x} \, dx-21 \int \frac {1}{\left (-5+e^x\right ) (-4+3 x)} \, dx+35 \int \frac {1}{\left (-5+e^x\right )^2 x} \, dx-63 \int \frac {1}{\left (-5+e^x\right ) (-4+3 x)^2} \, dx-105 \int \frac {1}{\left (-5+e^x\right )^2 (-4+3 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 19, normalized size = 0.76 \begin {gather*} \frac {28}{\left (-5+e^x\right ) x (-4+3 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 26, normalized size = 1.04 \begin {gather*} -\frac {28}{15 \, x^{2} - {\left (3 \, x^{2} - 4 \, x\right )} e^{x} - 20 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 25, normalized size = 1.00 \begin {gather*} \frac {28}{3 \, x^{2} e^{x} - 15 \, x^{2} - 4 \, x e^{x} + 20 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 0.76
method | result | size |
norman | \(\frac {28}{x \left ({\mathrm e}^{x}-5\right ) \left (3 x -4\right )}\) | \(19\) |
risch | \(\frac {28}{x \left ({\mathrm e}^{x}-5\right ) \left (3 x -4\right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 26, normalized size = 1.04 \begin {gather*} -\frac {28}{15 \, x^{2} - {\left (3 \, x^{2} - 4 \, x\right )} e^{x} - 20 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.70, size = 27, normalized size = 1.08 \begin {gather*} -\frac {28\,\left (4\,x-3\,x^2\right )}{x^2\,{\left (3\,x-4\right )}^2\,\left ({\mathrm {e}}^x-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.80 \begin {gather*} \frac {28}{- 15 x^{2} + 20 x + \left (3 x^{2} - 4 x\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________