Optimal. Leaf size=29 \[ -3+5 e^{e^x} x \left (-e^x+\frac {1}{4} \left (-2+e^{\log ^2(5)}\right )+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{4} e^{e^x} \left (-10+40 x-20 e^{2 x} x+e^{\log ^2(5)} \left (5+5 e^x x\right )+e^x \left (-20-30 x+20 x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^{e^x} \left (-10+40 x-20 e^{2 x} x+e^{\log ^2(5)} \left (5+5 e^x x\right )+e^x \left (-20-30 x+20 x^2\right )\right ) \, dx\\ &=\frac {1}{4} \int \left (-10 e^{e^x}+40 e^{e^x} x-20 e^{e^x+2 x} x+5 e^{e^x+\log ^2(5)} \left (1+e^x x\right )+10 e^{e^x+x} \left (-2-3 x+2 x^2\right )\right ) \, dx\\ &=\frac {5}{4} \int e^{e^x+\log ^2(5)} \left (1+e^x x\right ) \, dx-\frac {5}{2} \int e^{e^x} \, dx+\frac {5}{2} \int e^{e^x+x} \left (-2-3 x+2 x^2\right ) \, dx-5 \int e^{e^x+2 x} x \, dx+10 \int e^{e^x} x \, dx\\ &=\frac {5}{4} e^{e^x+\log ^2(5)} x+\frac {5}{2} \int \left (-2 e^{e^x+x}-3 e^{e^x+x} x+2 e^{e^x+x} x^2\right ) \, dx-\frac {5}{2} \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )-5 \int e^{e^x+2 x} x \, dx+10 \int e^{e^x} x \, dx\\ &=\frac {5}{4} e^{e^x+\log ^2(5)} x-\frac {5 \text {Ei}\left (e^x\right )}{2}-5 \int e^{e^x+x} \, dx-5 \int e^{e^x+2 x} x \, dx+5 \int e^{e^x+x} x^2 \, dx-\frac {15}{2} \int e^{e^x+x} x \, dx+10 \int e^{e^x} x \, dx\\ &=\frac {5}{4} e^{e^x+\log ^2(5)} x-\frac {5 \text {Ei}\left (e^x\right )}{2}-5 \int e^{e^x+2 x} x \, dx+5 \int e^{e^x+x} x^2 \, dx-5 \operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )-\frac {15}{2} \int e^{e^x+x} x \, dx+10 \int e^{e^x} x \, dx\\ &=-5 e^{e^x}+\frac {5}{4} e^{e^x+\log ^2(5)} x-\frac {5 \text {Ei}\left (e^x\right )}{2}-5 \int e^{e^x+2 x} x \, dx+5 \int e^{e^x+x} x^2 \, dx-\frac {15}{2} \int e^{e^x+x} x \, dx+10 \int e^{e^x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.82, size = 26, normalized size = 0.90 \begin {gather*} \frac {5}{4} e^{e^x} x \left (-2-4 e^x+e^{\log ^2(5)}+4 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 26, normalized size = 0.90 \begin {gather*} \frac {5}{4} \, {\left (4 \, x^{2} + x e^{\left (\log \relax (5)^{2}\right )} - 4 \, x e^{x} - 2 \, x\right )} e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 46, normalized size = 1.59 \begin {gather*} \frac {5}{4} \, {\left (4 \, x^{2} e^{\left (x + e^{x}\right )} + x e^{\left (\log \relax (5)^{2} + x + e^{x}\right )} - 4 \, x e^{\left (2 \, x + e^{x}\right )} - 2 \, x e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 28, normalized size = 0.97
method | result | size |
risch | \(\frac {\left (5 \,{\mathrm e}^{\ln \relax (5)^{2}} x +20 x^{2}-20 \,{\mathrm e}^{x} x -10 x \right ) {\mathrm e}^{{\mathrm e}^{x}}}{4}\) | \(28\) |
norman | \(\left (\frac {5 \,{\mathrm e}^{\ln \relax (5)^{2}}}{4}-\frac {5}{2}\right ) x \,{\mathrm e}^{{\mathrm e}^{x}}+5 \,{\mathrm e}^{{\mathrm e}^{x}} x^{2}-5 x \,{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {5}{4} \, {\left (4 \, x^{2} + x {\left (e^{\left (\log \relax (5)^{2}\right )} - 2\right )} - 4 \, x e^{x}\right )} e^{\left (e^{x}\right )} - \frac {5}{2} \, {\rm Ei}\left (e^{x}\right ) + \frac {5}{2} \, \int e^{\left (e^{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.54, size = 20, normalized size = 0.69 \begin {gather*} \frac {5\,x\,{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (4\,x+{\mathrm {e}}^{{\ln \relax (5)}^2}-4\,{\mathrm {e}}^x-2\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 31, normalized size = 1.07 \begin {gather*} \frac {\left (20 x^{2} - 20 x e^{x} - 10 x + 5 x e^{\log {\relax (5 )}^{2}}\right ) e^{e^{x}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________